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Appendix A: Posterior Properties of the Random Walk Model

The purpose of this Appendix is to provide technical details on the predictive density of the

random walk model with a standard diffuse prior on the residual covariance matrix. An analytical

expression of the predictive density is derived and its mean vector and covariance matrix are

also determined.

To these ends, let

yt = yt−1 + εt, t = 1, . . . , T, (A.1)

where the residuals εt are assumed to be i.i.d. N(0,Ω) with Ω positive definite and y0 is fixed.

The diffuse prior is given by

p(Ω) ∝ ∣∣Ω∣∣−(n+1)/2
. (A.2)

Stacking the model in (A.1) into n × T matrices y = [y1 · · · yT ] and ε = [ε1 · · · εT ], with

the realized values, for convenience, being denoted the same way, the posterior distribution is

proportional to the prior times the likelihood, which in natural logarithms can be expressed as

log p
(
y
∣∣y0,Ω

)
+ log p(Ω) = −nT

2
log(2π) − T + n + 1

2
log

∣∣Ω∣∣ − 1
2
tr

[
Ω−1εε′

]
. (A.3)

Recognizing that the last two terms on the right hand side of (A.3) form the log of the kernel

of the n-dimensional inverted Wishart distribution with location matrix εε′ and T degrees of

freedom, we obtain

log p
(
Ω

∣∣y, y0

)
= −nT

2
log(2) − n(n − 1)

4
log(π) − log Γn(T ) +

T

2
log

∣∣εε′∣∣
− T + n + 1

2
log

∣∣Ω∣∣ − 1
2
tr

[
Ω−1εε′

]
,

(A.4)

where

Γn(T ) =
n∏

i=1

Γ([T − i + 1]/2),
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for T ≥ n > 0 with Γ(·) being the gamma function. From Bayes theorem it therefore follows

that the log marginal likelihood is given by (A.3) minus (A.4), i.e.

log p
(
y|y0

)
= −n(2T − n + 1)

4
log(π) + log Γn(T ) − T

2
log

∣∣εε′∣∣. (A.5)

Normal Approximation of Marginal Predictive Likelihood

When forecasting with the random walk model it holds that

E
[
yT+h

∣∣y, y0,Ω
]

= yT , h = 1, . . . , h∗. (A.6)

The forecast error is therefore equal to the accumulation of εT+i over i = 1, . . . , h, while the

forecast error covariance matrix given Ω is

C
(
yT+h|y, y0,Ω

)
= hΩ, h = 1, . . . , h∗. (A.7)

From Rao-Blackwellization we know that the covariance matrix C(yT+h|y, y0) is equal to the

mean of the covariance matrix in (A.7) with respect to the posterior of Ω plus the covariance

matrix of the deviation of the mean in (A.6) and its population mean E[yT+h

∣∣y, y0]. The latter

term is zero since the population mean is also yT , while the former term is given by h times the

mean of the posterior of Ω.1 That is,

C
(
yT+h|y, y0

)
=

h

T − n − 1
εε′. (A.8)

When computing the marginal predictive likelihood with a normal approximation for the full

system we therefore make use of the realized forecast errors yT+h−yT and the covariance matrix

in (A.8).

When forecasting only a subset of the variables we need to take into account how the posterior

distribution for the covariance matrix of the corresponding subset of residuals is related to the

posterior p(Ω|y, y0). Let S be an n × ns matrix of columns from In which selects ys,t = S′yt.

Similarly, let S⊥ the the n × (n − ns) matrix which selects the remaining variables from the yt

vector. Define

M =
[
S S⊥

]
, (A.9)

i.e. M is an n×n matrix made up of all the columns of the identity matrix and therefore has a unit

determinant while M−1 = M ′. The posterior distribution of ΩM = M ′ΩM is an n-dimensional

inverted Wishart with location matrix M ′εε′M and T degrees of freedom. Letting ΩS = S′ΩS,

it follows from, e.g., Bauwens, Lubrano, and Richard (1999, Theorem A.17) that the posterior

of ΩS is an ns-dimensional inverted Wishart with location matrix S′εε′S and T −n+ns degrees

of freedom.

With this in mind, the normal approximation of the marginal predictive likelihood for the

subset of variables is based on the mean forecast error ys,T+h−ys,T and the population covariance

1 More generally, the posterior distribution of hΩ is inverted Wishart with location parameter hεε′ and T degrees
of freedom.
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matrix

C
(
ys,T+h|y, y0

)
=

h

T − n − 1
S′εε′S. (A.10)

Analytical Form of the Marginal Predictive Likelihood

The determination of the marginal predictive likelihood requires an expression for the conditional

likelihood function p(ys,T+h|y, y0,Ω). From equation (20) and using yT+h|T = yT and Σy,T+h|T =

hΩ we find that the conditional log-likelihood for the random walk model is given by

log p
(
ys,T+h

∣∣y, y0; Ω
)

= −ns

2
log(2πh) − 1

2
log

∣∣ΩS

∣∣ − 1
2h

tr
[
Ω−1

S εs,T,hε′s,T,h

]
, (A.11)

where εs,T,h = ys,T+h − ys,T , and the term involving log(h) is due to |hΩS | = hns |ΩS |.
The product of the conditional likelihood of ys,T+h and the posterior of ΩS is given by:

p
(
ys,T+h,ΩS

∣∣y, y0

)
=

∣∣S′εε′S
∣∣(T−n+ns)/2

(2πh)ns/22(T−n+ns)ns/2πns(ns−1)/4Γns(T − n + ns)
×

× ∣∣ΩS

∣∣−(T−n+2ns+2)/2 exp
[
−1

2
tr

(
Ω−1

S

[
S′εε′S + h−1εs,T,hε′s,T,h

])]
.

(A.12)

Recognizing that the two terms involving ΩS is the kernel of an ns-dimensional inverted Wishart

distribution with location matrix S′εε′S +h−1εs,T,hε′s,T,h and T −n+ns +1 degrees of freedom,

it follows that the integral of the density p
(
ys,T+h,ΩS

∣∣y, y0

)
with respect to ΩS is equal to

the expression in the first term on the right hand side of equation (A.12) times the inverse of

the integration constant of the IWns(S′εε′S + h−1εs,T,hε′s,T,h, T − n + ns + 1) distribution. We

therefore find that

p
(
ys,T+h

∣∣y, y0

)
=

Γns(T − n + ns + 1)
∣∣hS′εε′S

∣∣−1/2

πns/2Γns(T − n + ns)
∣∣Ins +

(
hS′εε′S

)−1
εs,T,hε′s,T,h

∣∣(T−n+ns+1)/2
. (A.13)

In other words (and as expected), the density of ys,T+h

∣∣y, y0 is an ns-dimensional t-distribution

with mean ys,T , covariance matrix given in (A.10), and T − n + ns degrees of freedom; see, e.g.,

Bauwens et al. (1999, Appendix A) for details.2

Appendix B: Posterior Properties of the Large BVAR Model

The large BVAR is estimated with the methodology suggested in Bańbura, Giannone, and Re-

ichlin (2010) and therefore relies on using dummy observations when implementing the normal-

inverted Wishart version of the Minnesota prior. Below we will first present the prior and

posterior distribution and thereafter show the relation between the prior parameters and the Td

dummy observations; see also Lubik and Schorfheide (2006).

2 Notice also that
∣∣Ins +

(
hS′εε′S

)−1
εs,T,hε′s,T,h

∣∣ = 1+ε′s,T,h

(
hS′εε′S

)−1
εs,T,h; see, e.g., Magnus and Neudecker

(1988, Proof of Theorem 1.9).
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The VAR representation of yt is given in equation (24), with εt ∼ Nn(0,Ω). Stacking the VAR

system as y = [y1 · · · yT ], X = [X1 · · · XT ], and ε = [ε1 · · · εT ], the log-likelihood is given by

log p
(
y
∣∣X1; Φ,Ω

)
= −nT

2
log(2π) − T

2
log

∣∣Ω∣∣ − 1
2
tr

[
Ω−1εε′

]
, (B.1)

where, for convenience, we use the same notation for the random variables as their realizations.

The normal-inverted Wishart prior for (Φ,Ω) is given by

vec
(
Φ

)∣∣Ω ∼ Nn(np+1)

(
vec

(
Φµ

)
,
[
ΩΦ ⊗ Ω

])
, (B.2)

Ω ∼ IWn

(
A, v

)
. (B.3)

This means that the sum of the log-likelihood and the log prior is given by

log p
(
y,Φ,Ω

∣∣X1

)
= −n(T + np + 1)

2
log(2π) − nv

2
log(2) − n(n − 1)

4
log(π)

− log Γn(v) − n

2
log

∣∣ΩΦ

∣∣ +
v

2
log

∣∣A∣∣
− T + n(p + 1) + v + 2

2
log

∣∣Ω∣∣
− 1

2
tr

[
Ω−1

(
εε′ + A +

(
Φ − Φµ

)
Ω−1

Φ

(
Φ − Φµ

)′)]
.

(B.4)

Using standard “Zellner” algebra, it is straightforward to show that

εε′ + A + (Φ − Φµ)Ω−1
Φ (Φ − Φµ)′

)
=

(
Φ − Φ̄

) (
XX ′ + Ω−1

Φ

) (
Φ − Φ̄

)′ + S, (B.5)

where

Φ̄ =
(
yX ′ + ΦµΩ−1

Φ

) (
XX ′ + Ω−1

Φ

)−1
,

S = yy′ + A + ΦµΩ−1
Φ Φ′

µ − Φ̄
(
XX ′ + Ω−1

Φ

)
Φ̄′.

Substituting for (B.5) in (B.4), we find that the conjugate normal-inverted Wishart prior gives

us a normal posterior for Φ|Ω and an inverted Wishart marginal posterior of Ω. Specifically,

vec
(
Φ

)∣∣Ω, y,X1 ∼ Nn(np+1)

(
vec

(
Φ̄

)
,
[
(XX ′ + Ω−1

Φ )−1 ⊗ Ω
])

, (B.6)

Ω
∣∣y,X1 ∼ IWn

(
S, T + v

)
. (B.7)

Combining these posterior results with equations (B.4) and (B.5) it follows that the log

marginal likelihood is given by

log p
(
y
∣∣X1

)
= −nT

2
log(π) + log Γn(T + v) − log Γn(v) − n

2
log

∣∣ΩΦ

∣∣
+

v

2
log

∣∣A∣∣ − n

2
log

∣∣XX ′ + Ω−1
Φ

∣∣ − T + v

2
log

∣∣S∣∣.
(B.8)
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The prior in (B.2) and (B.3) can be implemented through Td = n(p + 2) + 1 dummy obser-

vations by prepending the y (n × T ) and X (np + 1 × T ) matrices with the following:

y(d) =
[
λ−1

o diag[δ � ω] 0n×n(p−1) diag[ω] 0n×1 τ−1diag[δ � µ]

]

X(d) =

⎡
⎢⎣ 01×np 01×n γ−1 01×n

λ−1
o

(
jp ⊗ diag[ω]

)
0np×n 0np×1 τ−1

(
ıp ⊗ diag[µ]

)
⎤
⎥⎦ .

(B.9)

The vector ıp is a p-dimension unit vector, while the p×p matrix jp = diag[1 · · · p]. The hyper-

parameter λo > 0 gives the overall tightness in the Minnesota prior, the cross-equation tightness

is set to unity, while the harmonc lag decay hyperparameter is equal to 2. The hyperparameter

τ > 0 handles shrinkage for the sum of cofficients prior on (In − ∑p
i=1 Φi), where τ → 0 means

that the prior on the sum of the lag cofficients approach the case of exact differences, and where

shrinkage decreases as τ becomes larger. The n-dimensional vector δ gives the prior mean of the

diagonal of Φ1, ω is a vector of scale parameters for the residuals εit, while µ is a vector that

reflects the mean of yit. Finally, γ reflects the overall tightness on Φ0.

The relationship between the dummy observations and the prior parameters (Φµ,ΩΦ, A, v)

are:

Φµ = y(d)X
′
(d)

(
X(d)X

′
(d)

)−1
, ΩΦ =

(
X(d)X

′
(d)

)−1
,

A =
(
y(d) − ΦµX(d)

) (
y(d) − ΦµX(d)

)′
, v = Td − (np + 1) + 2.

This guarantees that the prior mean of Ω exists. Letting y� = [y(d) y] and X� = [X(d) X], it

follows that the posterior parameters

Φ̄ = y�X
′
�

(
X�X

′
�

)−1
,

XX ′ + Ω−1
Φ = X�X

′
�,

S =
(
y� − Φ̄X�

)(
y� − Φ̄X�

)′
.

In the empirical application, τ = 10λo, i.e. a relatively loose prior on the sum of the autore-

gressive matrices. The hyperparameters δi = 0 if yit is a first differenced variable and δi = 1

when yit is a levels variable. The scale parameters ωi is given by the within-sample residual

standard deviation from an AR(p) model for yit, while µi is equal to the within-sample mean

of yit. The parameter ς = γ−1 is set to a very small number, which takes care of having an

improper prior on Φ0.

The formula suggested by Bańbura et al. (2010) for selecting λo can be expressed as

λ̄o

(
φ
)

= arg min
λo

∣∣∣∣∣∣φ − 1
q

q∑
j=1

σ2
j (λo)
σ2

j (0)

∣∣∣∣∣∣ ,

where φ ∈ (0, 1) is the desired fit, and σ2
j (λ̃o) is the one-step-ahead mean square forecast error of

variable j when λo = λ̃o. The one-step-ahead within-sample mean square forecast errors used in
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the selection scheme are based on the sample 1985Q1–1998Q4. With φ = 0.5, q = 3 using real

GDP growth, the GDP deflator, and the short-term nominal interest rate, this selection scheme

sets λ̄o = 0.0693 when p = 4.

It should be noted that having an improper prior on Φ0 technically means that ΩΦ is singular.

This needs to be taken into account when computing, e.g., the log marginal likelihood in (B.8).

To deal with this, let

X =

⎡
⎢⎣ı′T

Y

⎤
⎥⎦ , X(d) =

⎡
⎢⎣01×Td

Y(d)

⎤
⎥⎦ , Γ =

[
Φ1 · · · Φp

]
, ΩΦ =

⎡
⎢⎣ γ2 01×np

0np×1 ΩΓ

⎤
⎥⎦ ,

where ıT is a T × 1 unit vector. The prior for the BVAR is now expressed as

vec
(
Γ
)∣∣Ω ∼ Nn2p

(
vec

(
Γµ

)
,
[
ΩΓ ⊗ Ω

])
, (B.10)

while p(Φ0) = 1 and the prior of Ω is given by (B.3). Let Z = y − ΓY , Φ̄0 = T−1ZıT , and let

D = IT − T−1ıT ı′T ,

a T × T symmetric and idempotent matrix. Through the usual Zellner algebra we have that

εε′ = ZDZ ′ +
(
Φ0 − Φ̄0

)
ı′T ıT

(
Φ0 − Φ̄0

)′
.

Furthermore, with D being symmetric and idempotent we may define Z̃ = ZD, such that

ỹ = yD, Ỹ = Y D and ZDZ ′ = Z̃Z̃ ′. The Zellner algebra now provides us with

Z̃Z̃ ′ +
(
Γ − Γµ

)
Ω−1

Γ

(
Γ − Γµ

)′ + A =
(
Γ − Γ̄

)(
Ỹ Ỹ ′ + Ω−1

Γ

) (
Γ − Γ̄

)′ + S,

where

Γ̄ =
(
ỹỸ ′ + ΓµΩ−1

Γ

)(
Ỹ Ỹ ′ + Ω−1

Γ

)−1

S = ỹỹ′ + A + ΓµΩ−1
Γ Γ′

µ − Γ̄
(
Ỹ Ỹ ′ + Ω−1

Γ

)
Γ̄′.

It can therefore be shown that the normal-inverted Wishart posterior for the VAR parameters

is given by

Φ0

∣∣Γ,Ω, y,X1 ∼ Nn

(
Φ̄0, T

−1Ω
)
, (B.11)

vec
(
Γ
)∣∣Ω, y,X1 ∼ Nn2p

(
vec

(
Γ̄
)
,
[
(Ỹ Ỹ ′ + Ω−1

Γ )−1 ⊗ Ω
])

(B.12)

Ω
∣∣y,X1 ∼ IWn

(
S, T + v − 1

)
. (B.13)

Hence, the improper prior on Φ0 results in a loss of degrees of freedom for the posterior of Ω.

Furthermore, the log marginal likelihood is

log p
(
y
∣∣X1

)
= −n(T − 1)

2
log(π) + log Γn(T + v − 1) − log Γn(v) − n

2
log

∣∣ΩΓ

∣∣
+

v

2
log

∣∣A∣∣ − n

2
log(T ) − n

2
log

∣∣Ỹ Ỹ ′ + Ω−1
Γ

∣∣ − T + v − 1
2

log
∣∣S∣∣,

(B.14)
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where the term log(T ) stems from T = ı′T ıT and is obtained when integrating out Φ0 from the

joint posterior. The relationship between the dummy observations and the prior parameters is

Γµ = y(d)Y
′
(d)

(
Y(d)Y

′
(d)

)−1
, ΩΓ =

(
Y(d)Y

′
(d)

)−1
,

A =
(
y(d) − ΓµY(d)

) (
y(d) − ΓµY(d)

)′
, v = Td − (np + 1) + 2.

Letting ỹ� = [y(d) ỹ] and Ỹ� = [Y(d) Ỹ ], it follows that the posterior parameters

Γ̄ = ỹ�Ỹ
′
�

(
Ỹ�Ỹ

′
�

)−1
,

Ỹ Ỹ ′ + Ω−1
Γ = Ỹ�Ỹ

′
� ,

S =
(
ỹ� − Γ̄Ỹ�

)(
ỹ� − Γ̄Ỹ�

)′
.

References

Bańbura, M., Giannone, D., and Reichlin, L. (2010), “Large Bayesian Vector Auto Regressions,”

Journal of Applied Econometrics, 25, 71–92.

Bauwens, L., Lubrano, M., and Richard, J. F. (1999), Bayesian Inference in Dynamic Econo-

metric Models, Oxford University Press, Oxford.

Lubik, T. and Schorfheide, F. (2006), “A Bayesian Look at New Open Economy Macroeco-

nomics,” in M. L. Gertler and K. S. Rogoff (Editors), NBER Macroeconomics Annual 2005,

313–366, MIT Press.

Magnus, J. R. and Neudecker, H. (1988), Matrix Differential Calculus with Applications in

Statistics and Econometrics, John Wiley, Chichester.

– 7 –


