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Abstract: This paper shows how to compute the h-step-ahead predictive likelihood for any
subset of the observed variables in parametric discrete time series models estimated with
Bayesian methods. The subset of variables may vary across forecast horizons and the problem
thereby covers marginal and joint predictive likelihoods for a fixed subset as special cases. The
predictive likelihood is of particular interest when ranking models in forecast comparison exer-
cises, where the models can have different dimensions for the observables and share a common
subset, but has broader applications since the predictive likelihood is a natural model selec-
tion device under a Bayesian approach. The basic idea is to utilize well-known techniques for
handling missing data when computing the likelihood function, such as a missing observations
consistent Kalman filter for linear Gaussian models, but it also extends to nonlinear, nonnor-
mal state-space models. The predictive likelihood can thereafter be calculated via Monte Carlo
integration using draws from the posterior distribution. As an empirical illustration, we use
euro area data and compare the forecasting performance of the New Area-Wide Model, a small-
open-economy DSGE model, to DSGE-VARs, and to reduced-form linear Gaussian models.
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1. Introduction

It has long been recognized that using the predictive likelihood is a valid Bayesian approach to

model selection (see, e.g., Box, 1980), and the predictive Bayes factor is naturally defined from a

ratio of two predictive likelihoods (Gelfand and Dey, 1994, Kass and Raftery, 1995). In discrete

time series analysis, the predictive likelihood for a subset of the observed variables makes it

possible to compare forecast accuracy across models that have different conditioning variables

but where some of the forecasted variables are shared. A forecaster or policy maker is typically

only interested in a limited number of the variables that a multivariate model can predict and

a forecast comparison statistic based only on the variables of interest is therefore desirable. A

special case is when we are interested in comparing the forecasts of a single variable, such as
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inflation, across a set of models, whereas larger subsets are required if we are also concerned

with predicting comovements. Although point forecasts may reveal interesting aspects of the

models involved, such forecasts are not well suited for model selection, the determination of

model weights in a model averaging study (Eklund and Karlsson, 2007), or the construction

of optimal prediction pools (Geweke and Amisano, 2011, 2012). The predictive likelihood is a

natural tool for dealing with such matters, with the log predictive score as an extension from

single-period comparisons to a multi-period setting.

The determination of the predictive likelihood for a subset of the variables requires that all the

variables which are excluded from the subset are integrated out. If the predictive likelihood has

a known distribution, such as a multivariate t, then the marginalization problem may be solved

through textbook results. However, such cases are rare and typically involve very simple models.

As a consequence, the next step is to take into account that the predictive likelihood is equal to

the integral over the parameter space of the conditional likelihood times the posterior density

of the parameters. By the conditional likelihood we mean the predictive likelihood conditional

on a value for the parameters. If the conditional likelihood is based on a distribution where

marginalization can be handled analytically, such as for a normal density, then the marginal-

ization problem for the predictive likelihood may be solved at this stage (see, e.g., Andersson

and Karlsson, 2008, Karlsson, 2012, or Geweke and Amisano, 2010). What remains to be done

once the conditional likelihood has been marginalized is to integrate out the dependence of the

parameters.

The main contribution of this paper concerns the calculation of the predictive likelihood for

parametric discrete time series models when some of the predicted variables need to be integrated

out. Specifically, we show how the h-step-ahead predictive likelihood can be calculated for any

subset of the variables over the forecast horizon, and the suggested approach can be applied to

a large family of models, with Gaussian log-linearized dynamic stochastic general equilibrium

(DSGE) models, Bayesian vector autoregressions (BVARs), and DSGE-VARs as interesting

special cases. Our approach to marginalization is based on the simple observation that the

conditional likelihood for the subset of variables to be predicted is equal to the conditional

likelihood for the full set of variables, but where the values of the variables that are excluded

from the subset of interest are replaced with missing observations. For linear models with

normal conditional likelihoods, the Kalman filter is easily adapted to handle missing data and

may therefore be used to marginalize the conditional likelihood. Once we turn to nonlinear,

nonnormal time series models that may be cast into state-space form, missing observations

consistent filters may likewise be applied to compute the conditional likelihood; see, for instance,

Giordani, Pitt, and Kohn (2011).

We illustrate the approach by building onto the forecast comparison exercise in Christoffel,

Coenen, and Warne (2011), henceforth CCW. They review forecasting with DSGE models, using
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the New Area-Wide Model (NAWM; pronounced nŏm) as an example, and their pseudo out-of-

sample forecast exercise covers the period after the introduction of the euro, focusing on three

nested partitions of the 12 (out of 18) observed variables that are endogenously determined in

the NAWM. A multivariate random walk model with a diffuse prior on the covariance matrix

and the best performing BVAR model from CCW, estimated with the methodology developed

by Bańbura, Giannone, and Reichlin (2010) for large BVARs, are included in the empirical

illustration for comparisons with the NAWM and DSGE-VAR models. Following Adolfson,

Lindé, and Villani (2007b), CCW use a normal approximation of the predictive likelihood and

we will assess the results from this approximation to those obtained from an estimator of the

predictive likelihood based on Monte Carlo integration of the conditional likelihood with respect

to the posterior draws.

The remainder of the paper is organized as follows. Section 2 shows how the predictive

likelihood can be calculated via the conditional likelihood when we are interested in a subset of

the predicted variables. Given a solution to this problem, we thereafter discuss the harmonic

mean estimator, importance sampling estimators, and Monte Carlo integration for integrating

out the dependence on the model parameters. Section 3 examplifies the approach through linear

state-space models with Gaussian innovations, focusing on marginalized h-step-ahead forecasts

with log-linearized DSGE models and VAR models. The suggested approach for computing the

predictive likelihood for a subset of the variables is thereafter illustrated in a forecast comparison

exercise in Section 4. Finally, Section 5 summarizes the main findings of the paper.

2. The Predictive Likelihood

2.1. Notation

To establish notation, let θm ∈ Θm be a vector of unobserved parameters of a complete model

(Geweke, 2005, 2010), indexed by m, while YT = {y1, y2, . . . , yT } is a discrete, real-valued time

series for an n-dimensional vector of observables yt. The observed values of this vector are

denoted by yo
t , while the sample of observations is similarly denoted by Yo

T . The observables

density function for the time series YT is given by p(YT |θm,m), while the likelihood function is

denoted by p(Yo
T |θm,m). Bayesian inference is based on combining a likelihood function with a

prior distribution, p(θm|m), in order to obtain a posterior distribution of the model parameters,

p(θm|Yo
T ,m). From Bayes theorem we know that the posterior is equal to the posterior kernel

(the product of the likelihood and the prior) divided by the marginal likelihood, denoted by

p
(Yo

T

∣∣m)
=

∫
Θm

p
(Yo

T

∣∣θm,m
)
p
(
θm

∣∣m)
dθm. (1)

The marginal likelihood is a standard measure of fit in Bayesian analysis and is a joint assess-

ment of how well the prior and likelihood agrees with the data. It is used for computing Bayes

factors, posterior odds, and posterior model probabilities (Kass and Raftery, 1995) provided

that Lindley’s (1957) paradox does not apply (Strachan and van Dijk, 2011).
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Point and density forecasts are determined from the predictive density of model m and, for

a sequence of future values of the observed variables {yT+1, . . . , yT+h}, with h = 1, . . . , h∗, this

density can be expressed as

p
(
yT+1, . . . , yT+h

∣∣Yo
T ,m

)
=

∫
Θm

p
(
yT+1, . . . , yT+h

∣∣Yo
T , θm,m

)
p
(
θm

∣∣Yo
T ,m

)
dθm. (2)

From a Bayesian perspective, it may be noticed that for a given model there is no uncertainty

about the predictive density and, hence, there is no uncertainty about a point or a density

forecast which is determined from it. This can be seen in equation (2) where posterior parameter

uncertainty is integrated out and what remains is a deterministic function of the data and the

model. In practise, numerical methods typically need to be applied, but the induced simulation

uncertainty can be controlled by the econometrician.

2.2. Relationships between the Predictive and the Marginal Likelihood

The predictive likelihood of model m is given by the predictive density in (2) evaluated at the

observed values {yo
T+1, . . . , y

o
T+h} and it is straightforward to show that it is equal to the ratio

of the marginal likelihood for the historical and predictions sample, Yo
T+h, and the marginal

likelihood for the historical sample, Yo
T ; see, e.g., Geweke (2005). That is,

p
(
yo

T+1, . . . , y
o
T+h

∣∣Yo
T ,m

)
=

p
(Yo

T+h

∣∣m)
p
(Yo

T

∣∣m) , h = 1, . . . , h∗. (3)

The predictive likelihood is therefore the update factor applied to the marginal likelihood for the

historical sample that produces the marginal likelihood for the historical and prediction sample.

It can be inferred from (3) that the predictive likelihood for model mi may be greater than for

model mj , yet the marginal likelihoods for model mi can be smaller than those for model mj

for both samples Yo
T and Yo

T+h. Furthermore, the marginal likelihood can be expressed as a

product of one-step-ahead predictive likelihoods according to:

p
(Yo

τ

∣∣m)
=

τ∏
t=1

p
(
yo

t

∣∣Yo
t−1,m

)
, τ = T, T + h, h = 1, . . . , h∗, (4)

establishing intimite relationships between marginal and predictive likelihoods.

The use of the predictive likelihood as a valid Bayesian approach to model selection has long

been recognized. Box (1980), for example, has emphasized the complementary roles in the model

building process of the posterior and predictive distributions, where the former can be used for

diagnostic checking, while the latter provides a general basis for robustness checks. For models

with improper priors—and therefore potentially subject to Lindley’s paradox—the predictive

likelihood can still be used for model selection provided that the sample being conditioned on

is large enough to train the prior to a proper density; see, e.g., Eklund and Karlsson (2007).
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From equations (3) and (4) it follows that the h-step-ahead predictive likelihood can also be

expressed as a product of h one-step-ahead predictive likelihoods:

p
(
yo

T+1, . . . , y
o
T+h

∣∣Yo
T ,m

)
=

h∏
i=1

p
(
yo

T+i

∣∣Yo
T+i−1,m

)
.

In essence the predictive likelihood in (3), just like the marginal likelihood in (1), therefore

covers one-step-ahead forecasts only and is not well suited for a comparison of the forecasting

performance for models when we are interested in forecasts at h > 1. For such cases, the object

of interest is the marginalized h-step-ahead predictive likelihood:

p
(
yo

T+h

∣∣Yo
T ,m

)
=

∫ ∞

−∞
· · ·

∫ ∞

−∞
p
(
yT+1, . . . , yT+h−1, y

o
T+h

∣∣Yo
T ,m

)
dyT+h−1 · · · dyT+1. (5)

The relationship between the ratio of marginal likelihoods and the predictive likelihood in (3)

holds (trivially) also for the marginalized predictive likelihood in (5) when h = 1. For other

horizons it is claimed by both Adolfson et al. (2007b, p. 324) and CCW (p. 114) that this

connection breaks down. Furthermore, Adolfson et al. (2007b, p. 325) remark that computing

the marginalized predictive likelihood in (5) for h > 1 is not an easy task since p
(
yo

T+h|Yo
T ,m

)
does not have a closed form solution and that kernel density estimation from predictive draws

is not practical unless the dimension of yt+h is small. For linear Gaussian models they therefore

suggest using a normal approximation of the predictive likelihood based on the mean and the

covariance of the marginalized predictive distribution.

However, going back a step one realizes that both Adolfson et al. (2007b) and CCW are

incorrect when they claim that the relationship between the marginal and predictive likelihood

breaks down for h > 1 in (5), since it remains true that

p
(
yo

T+h

∣∣Yo
T ,m

)
=

p
(
yo

T+h,Yo
T

∣∣m)
p
(Yo

T

∣∣m) . (6)

The denominator is the marginal likelihood of model m for the historical sample Yo
T and the

numerator is likewise the marginal likelihood of this model when using the sample (yo
T+h,Yo

T ).

Hence, the connection between the predictive likelihood and the marginal likelihood remains

also for h > 1.

Suppose that the models we wish to compare do not predict the same variables, i.e. yt depends

on m, but that they have a common subset, denoted by ys,t, of the observables that they can

predict. The dimension of this subset is denoted by ns, with ns ≤ n. For example, we may be

concerned with the comparison of density forecasts of inflation from univariate and multivariate

models. Hence, rather than integrating out the influence of all observables from certain time

periods, as in (5), we would like to integrate out the influence from all observables that are not

included in ys,t such that the predictive likelihood only covers {yo
s,T+1, . . . , y

o
s,T+h} conditional

on Yo
T . For this situation, is it also true that the predictive likelihood can be expressed as a

ratio of two marginal likelihoods.
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These two examples can be treated as special cases of the situation when the dimension of

the subset of variables ys,t is time-varying, i.e., when dim(ys,t) = nst ∈ {0, 1, . . . , n}. Letting

Ys,T,h = {ys,T+1, . . . , ys,T+h}, the predictive likelihood for this general case is

p
(Yo

s,T,h

∣∣Yo
T ,m

)
=

p
(Yo

s,T,h,Yo
T

∣∣m)
p
(Yo

T

∣∣m) . (7)

The problem of computing the marginalized predictive likelihood on the left hand side of

(7) can be reformulated into the issue of being able to compute the marginal likelihood for the

historical sample and the prediction sample subject to some realizations being ignored, i.e., the

numerator on the right hand side. But this suggests that marginalization can be regarded as

solving a missing data problem. In other words, provided that we can compute the likelihood

function for the historical and prediction sample subject to missing observations we can also

compute the marginalized predictive likelihood for any choice Yo
s,T,h of predicted variables.

The idea is related to data augmentation and other such EM algorithm extensions. For these

algorithms, the model is used to replace missing observations with model-based draws of the

latent variables and then use complete-data methods to address the incomplete-data problem;

see, e.g., Tanner and Wong (1987) and Rubin (1991). In our case, we assume that the observables

treated as missing are generated by the same state-space model as Yo
s,T,h.

In the case of linear state-space models with Gaussian shocks and measurement errors, the

likelihood function can be calculated using a Kalman filter which allows for missing observations;

see, e.g., Durbin and Koopman (2012, Chapter 4.10). Once we turn to nonlinear, nonnormal

state-space models a missing observations consistent filter, such as the particle filter (sequential

Monte Carlo), may instead be applied when computing the likelihood; see Giordani et al. (2011)

for a survey on filtering in state-space models, or Durbin and Koopman (2012, Chapter 12) for

an introduction to particle filtering.

If the conditional likelihood, denoted by p(Yo
s,T,h|Yo

T , θm,m), is a normal density, then marginal-

ization can also be conducted directly via the predictive mean and the covariance matrix condi-

tional on the parameters by utilizing well-known properties of the normal distribution. Such an

approach to marginalization is considered by Andersson and Karlsson (2008) and is in the case

of linear models equivalent to using a Kalman filter for missing data. One advantage with the

Kalman filter approach is that it provides a unifying framework for all linear models with a nor-

mal conditional likelihood, allowing the same software code to handle different models. Another

advantage is that it emphasizes the recursive nature of evaluating the conditional likelihood for

various forecast horizons.

2.3. Estimation of the Predictive Likelihood

Once the problem of calculating the conditional likelihood for a subset of the observed variables

has been overcome, we proceed with the second step for computing the predictive likelihood.

That is, to integrate out the dependence on the parameters. We assume that: (i) parameter
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draws from the posterior density based on direct sampling or some Monte Carlo based simulator

are available; and (ii) the predictive likelihood does not have a closed form solution for all

forecast horizons. The second condition is typically met when we are dealing with a marginalized

predictive likelihood, and should a closed form solution exist we would take advantage of it.

The predictive likelihood on the left hand side of (7) may be estimated with, e.g., the harmonic

mean (HM) estimator; see Gelfand and Dey (1994), the truncated normal version in Geweke

(1999, 2005), or the extension to a truncated elliptical in Sims, Waggoner, and Zha (2008).

Other methods, such as bridge sampling or cross-entropy with importance sampling may also be

considered; see Meng and Wong (1996), Frühwirth-Schnatter (2004), and Chan and Eisenstat

(2013).

HM estimators of the predictive likelihood ideally require two sets of posterior draws: θ
(i)
h ∈

p(θ|Yo
s,T,h,Yo

T ), i = 1, . . . , Nh, and θ(j) ∈ p(θ|Yo
T ), for j = 1, . . . , N , where the model index m

has been supressed for notational convenience. The predictive likelihood can now be estimated

as

p̂HM

(Yo
s,T,h

∣∣Yo
T

)
=

⎡
⎣ 1

Nh

Nh∑
i=1

f
(
θ
(i)
h

)
p
(Yo

s,T,h

∣∣Yo
T , θ

(i)
h

)
p̂HM

(
θ
(i)
h

∣∣Yo
T

)
⎤
⎦
−1

, (8)

where the function f(θ) is a proper density and therefore integrates to unity, and the estimated

posterior density is

p̂HM

(
θ
(i)
h

∣∣Yo
T

)
=

p
(Yo

T

∣∣θ(i)
h

)
p
(
θ
(i)
h

)
p̂HM

(Yo
T

) . (9)

The θ(j) draws are needed to estimate the marginal likelihood in the denominator of (9). It

follows from (8) and (9) that the HM estimator of the predictive likelihood is simply a ratio of

marginal likelihood estimates:

p̂HM

(Yo
s,T,h

∣∣Yo
T

)
=

⎡
⎣ 1

Nh

Nh∑
i=1

f
(
θ
(i)
h

)
p
(Yo

s,T,h,Yo
T

∣∣θ(i)
h

)
p
(
θ
(i)
h

)
⎤
⎦
−1 ⎡

⎣ 1
N

N∑
j=1

f
(
θ(j)

)
p
(Yo

T

∣∣θ(j)
)
p
(
θ(j)

)
⎤
⎦ , (10)

where p(Yo
s,T,h,Yo

T |θ) is the product of the conditional likelihood p(Yo
s,T,h|Yo

T , θ) and the likeli-

hood function p(Yo
T |θ).

The posterior draws θ
(i)
h depend on the forecast horizon h as well as on the selected subset

of variables. To avoid having to generate posterior draws for each sample {Yo
s,T,h,YT }, it is

tempting to replace θ
(i)
h in (8) with θ(j). If the dimension of Ys,T,h is small, this approximation

may work well in practise, but unlike the estimator in (8) the resulting predictive likelihood

estimator is not consistent.

If we insist on using only one set of parameter draws for all forecast horizons when computing

the predictive likelihood, we may instead use an importance sampling (IS) estimator; see, e.g.,

Geweke (2005). With θ(k), k = 1, . . . , Nk, being draws from the importance density g(θ), a
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general expression of the IS estimator is

p̂IS

(Yo
s,T,h

∣∣Yo
T

)
=

1
Nk

Nk∑
k=1

p
(Yo

s,T,h

∣∣Yo
T , θ(k)

)
p
(
θ(k)

∣∣Yo
T

)
g
(
θ(k)

) . (11)

Letting g(θ) = p(θ|Yo
T ) such that θ(k) = θ(j) with Nk = N , the estimator of the predictive

likelihood in (11) is simply the average over the N posterior draws θ(j) of the conditional like-

lihood, i.e. standard Monte Carlo integration based on the conditional likelihood. Relying on

the idea of Rao-Blackwellization, such an estimator is also suggested for models with a normal

conditional likelihood by Andersson and Karlsson (2008); see also Geweke and Amisano (2010).

Under certain regularity conditions (Tierney, 1994), the right hand side of (11) converges al-

most surely to the expected value of p(Yo
s,T,h|Yo

T , θ) with respect to p(θ|Yo
T ), i.e. to the predictive

likelihood p(Yo
s,T,h|Yo

T ). Hence, equipped with the posterior draws θ(j) and the conditional like-

lihood, p(Yo
s,T,h|Yo

T , θ), the predictive likelihood can be consistently estimated directly, without

having to compute it from two marginal likelihoods, and without having to sample from the

distribution of the parameters conditional on (Yo
s,T,h,Yo

T ) for each forecast horizon h = 1, . . . , h∗

and each subset of variables that we are interested in.

A further important property of the IS estimator is that it is unbiased (see Chan and Eisenstat,

2013, Proposition 1), while the HM estimator is not. Furthermore, the latter estimator is

sensitive to the choice of f(θ) and can be difficult to pin down numerically when the dimension of

θ is large, while the IS estimator based on the posterior p(θ|Yo
T ) should be less hampered by this.

In the case of (log-linearized) DSGE models, which are typically tightly parameterized, numerical

issues with the HM need not be a major concern, but for BVAR models the computations need

to take all the VAR parameters into account and such issues are therefore more likely to be

important.

The IS estimator is expected to work well in practise when the draws from the importance

density cover well enough the parameter region where the conditional likelihood is large. This

is typically the case when computing the marginalized predictive likelihood with g(θ) = p(θ|Yo
T )

for shorter forecast horizons or a low dimensional Ys,T,h prediction sample, but it is questionable

when dealing with the predictive likelihood as the dimension of the prediction sample becomes

large. For instance, when ys,t = yt, t = T +1, . . . , T +h, and h is sufficiently large, the situation

resembles the case when the marginal likelihood is computed by averaging the likelihood over

the prior draws, and such an estimator is typically poor. It may then be pertinent to consider

cross-entropy methods for selecting the importance density optimally, as in Chan and Eisenstat

(2013). With these caveats in mind, the IS estimator with importance density given by the

posterior is treated below as the predictive likelihood estimator that is most likely to pinpoint

the “true” value. Comparisons with other consistent and unbiased estimators of the predictive

likelihood is left for future research.

Finally, importance sampling is based on i.i.d. draws from the importance density. For many

parametric time series models, the posterior draws are obtained via Markov chain Monte Carlo,
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such as the random walk Metropolis sampler, and are therefore not independent. In strict terms,

the estimator in (11) is not an IS estimator when the i.i.d. assumption is violated, but we shall

nevertheless use this term also when the draws from the posterior are dependent.

2.4. Normal Approximation of the Predictive Likelihood

It was suggested by Adolfson et al. (2007b) and CCW to approximate the predictive likelihood

with a normal density with mean and covariance matrix taken from the predictive density. While

such an approximation is not needed when we know how to compute the conditional likelihood,

it can nevertheless serve as an analytical tool for enhancing our understanding of the results of

a forecast comparison study.

First, the mean and covariance matrix of the predictive density in (2) can be estimated di-

rectly from the posterior draws when the mean and covariance matrix of the predicted variables

conditional on the historical data and the parameters have analytical expressions. Let these an-

alytically specified moments be denoted by E[yT+1, . . . yT+h|Yo
T , θ] and C[yT+1, . . . yT+h|Yo

T , θ],

respectively. The mean of the predictive density is given by

E
[
yT+1, . . . yT+h

∣∣Yo
T

]
= ET

[
E

[
yT+1, . . . yT+h

∣∣Yo
T , θ

]]
, (12)

where ET denotes the expectation with respect to the posterior p(θ|Yo
T ). The covariance matrix

can be expressed as

C
[
yT+1, . . . yT+h

∣∣Yo
T

]
= ET

[
C

[
yT+1, . . . yT+h

∣∣Yo
T , θ

]]
+ CT

[
E

[
yT+1, . . . yT+h

∣∣Yo
T , θ

]]
, (13)

and CT denotes the covariance with respect to the posterior. Notice that the covariance matrix

of the predictive density is obtained through Rao-Blackwellization, where the first term on the

right hand side reflects residual uncertainty and the second term parameter uncertainty.

Second, the normal approximation provides a simple way of decomposing the predictive likeli-

hood into a term reflecting forecast errors and a term driven by forecast uncertainty. The mean

and covariance matrix of the predicted variables Ys,T,h is determined by selecting the proper

elements of (12) and (13), respectively. Next, notice that

log p̂N

(Yo
s,T,h

∣∣Yo
T

)
= −d

2
log

(
2π

)
+ Ds,T+h + Qs,T+h, (14)

where d is the dimension of the predicted variables Ys,T,h,

Ds,T+h = −
log

∣∣∣C[Ys,T,h

∣∣Yo
T

]∣∣∣
2

, (15)

Qs,T+h = −εo′
s,T+hC

[Ys,T,h

∣∣Yo
T

]−1
εo
s,T+h

2
, (16)

and εo
s,T+h the the vector of prediction errors for the realizations Yo

s,T,h. The forecast uncertainty

term is given by Ds,T+h, while Qs,T+h gives the impact of the quadratic standardized forecast

errors on the normal approximation of the log predictive likelihood. This decomposition may
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be of particular interest when the difference between the normal approximation and the IS

estimator of the predictive likelihood is small, or the ranking of models is robust across these

measures. For such cases, the decomposition may reveal whether forecast uncertainty (15) or

forecast errors (16) is responsible for the ranking of models.

3. Linear State-Space Models with Gaussian Innovations

Let us now turn to three models with a normal conditional likelihood. The first case is a log-

linearized DSGE model with rational expectations, and the second deals with a VAR model.

The first model is structural in the sense that (most of) the parameters have an economic

interpretation, and is usually tightly parameterized. VAR models, on the other hand, generally

have an abundance of parameters and are nonstructural in the sense that (most of) the parameter

do not have an economic interpretation. In addition, we discuss the case of DSGE-VAR models

(see Del Negro and Schorfheide, 2004, or Del Negro, Schorfheide, Smets, and Wouters, 2007),

which serves as an interesting example of a “marriage” between the structural and nonstructural

modelling approaches. We will also make use of DSGE-VAR models in the empirical illustration

in Section 4.

3.1. DSGE Models

Since the turn of the century, we have witnessed the development of a new generation of DSGE

models that build on explicit micro-foundations with optimizing agents. Major advances in esti-

mation methodology allow the estimation of variants of these models that are able to compete,

in terms of data coherence, with more standard time series models, such as VARs; see, among

others, the empirical models in Christiano, Eichenbaum, and Evans (2005), Smets and Wouters

(2003, 2007), and Adolfson, Laséen, Lindé, and Villani (2007a). Efforts have also been under-

taken to bring these models to the forecasting arena with promising results; see, for example,

CCW, Del Negro and Schorfheide (2012), and references therein.

The log-linearized DSGE model may be written as:

A−1ξt−1 + A0ξt + A1Etξt+1 = Dηt, t = 1, 2, . . . , T, (17)

where ηt is a q-dimensional vector with i.i.d. standard normal structural shocks (ηt ∼ N(0, Iq)),

while ξt is an r-dimensional vector of model variables, defined as deviations from the steady

state. The matrices Ai (r × r), with i = −1, 0, 1, and D (r × q) are functions of θ.

Provided that a unique and convergent solution of the system (17) exists at a particular value

of θ (see, e.g., Anderson, 2010, Klein, 2000, or Sims, 2002), we can express the model variables

as a VAR system:

ξt = Fξt−1 + Bηt, t = 1, . . . , T, (18)
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where F (r×r) and B (r×q) are uniquely determined by θ. The observed variables are denoted

by yt, an n-dimensional vector, and are linked to the model variables ξt through the equation

yt = µ + H ′ξt + wt, t = 1, . . . , T. (19)

The measurement errors, wt, are assumed to be i.i.d. N(0, R), while µ is the population mean

(steady state) of yt conditional on θ provided that H ′ξt is stationary. The measurement errors

and the shocks ηt are assumed to be independent, while the matrices H and R are also uniquely

determined by θ.

The system in (18) and (19) is a state-space model, where equation (18) gives the state or

transition equation and (19) the measurement or observation equation. Sargent (1989) was

among the first to recognize that linear rational expectations models can be cast in this form.

Provided the number of measurement errors and structural shocks is large enough, we can

calculate the likelihood function with the Kalman filter; see, e.g., Durbin and Koopman (2012)

for details.

Suppose that we are interested in forecasting the subset of observables Ys,T,h = ys,T+h, i.e.

the marginal h-step-ahead forecasts for a subset of the observables. The log of the conditional

likelihood of the DSGE model is given by

log p
(
yo

s,T+h

∣∣Yo
T , θ

)
= −ns

2
log(2π) − 1

2
log

∣∣Σys,T+h|T
∣∣

−1
2

(
yo

s,T+h − ys,T+h|T
)′ Σ−1

ys,T+h|T
(
yo

s,T+h − ys,T+h|T
)
,

(20)

where ys,T+h = S′yT+h, ys,T+h|T = S′yT+h|T , and Σys,T+h|T = S′Σy,T+h|TS, with S being an

n×ns known selection matrix (ns ≤ n), and h = 1, . . . , h∗. For convenience we assume that the

S matrix is constant over the forecast horizon h, i.e. that we have the same subset of variables

for each forecast horizon. The Kalman filter provides us with

yT+h|T = µ + H ′F hξT |T , (21)

Σy,T+h|T = H ′PT+h|T H + R, (22)

PT+h|T = FPT+h−1|T F ′ + BB′, h = 1, . . . , h∗, (23)

where ξT |T is the filter estimate of the state variables, and PT |T the corresponding filter estimate

of the state variable covariance matrix based on the data Yo
T . The conditional likelihood in (20)

may now be combined with the posterior draws of θ to estimate the predictive likelihood of

yo
s,T+h for the DSGE model with the IS estimator in (11).

The expressions for the predictive mean and covariance matrix of the observables conditional

on the parameters in (21) and (22) may be combined with equations (12) and (13), respec-

tively, and the posterior draws to estimate the mean and covariance matrix of the marginalized

predictive density. These moments can thereafter be employed when computing the normal

approximation of the predictive likelihood, taking the selection matrix S into account.
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3.2. VAR Models

VAR models have played a central role in the development of empirical macroeconomics since the

seminal article by Sims (1980). One reason for this success is that they highlight the importance

of a multivariate dynamic specification for macroeconomic analysis, letting all observed variables

be treated as endogenous. Moreover, they allow for structural interpretations once the underlying

structural shocks have been identified from the one-step-ahead forecast errors of the model,

popularizing tools such as impulse response functions and forecast error variance decompositions.

Furthermore, the models are closely connected with the concepts of cointegration and common

trends; see Engle and Granger (1987) and Stock and Watson (1988).

VAR models may also be considered as linear approximations of DSGE models. The state-

space representation in (18) and (19) can be expressed as a infinite order VAR representation

when the so-called “poor man’s invertibility condition” in Fernández-Villaverde, Rubio-Ramírez,

Sargent, and Watson (2007) is satisfied. As pointed out by Franchi and Paruolo (2012), this

condition is typically sufficient for the existence of an infinite order VAR, but is sometimes also

necessary.

The VAR model of yt can be written as:

yt = Φ0 +
p∑

j=1

Φjyt−j + εt, t = 1, . . . , T, (24)

where εt ∼ Nn(0,Σε). The vector Φ0 is n × 1, while Φj is n × n for j = 1, . . . , p. We assume

that initial values for yt exists for t = 0, . . . , 1 − p. Let Ψ denote an np × np matrix with

Ψ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ1 · · · Φp−1 Φp

In 0 0
. . .

0 In 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

while Jp is an np × n matrix with In on top and zeros below such that yt = J ′
pYt, where

Yt = [y′t · · · y′t−p+1]
′. We now rewrite the VAR system for forecasting exercises as:

yT+h = J ′
px̄T+h + J ′

pΨ
iYT + J ′

pε̄T+h, h = 1, . . . , h∗, (25)

where

x̄T+h = JpΦ0 + Ψx̄T+h−1,

ε̄T+h = JpεT+h + Ψε̄T+h−1, h = 1, . . . , h∗,

and these np-dimensional vectors are initialized through x̄T = ε̄T = 0.

The log of the conditional likelihood of the VAR model for the subset of observables Ys,T,h =

ys,T+h is again given by equation (20) when we take into account the parameters of the VAR.
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From equation (25) it is straightforward to show that

yT+h|T = J ′
px̄T+h + J ′

pΨ
hY o

T , (26)

Σy,T+h|T = J ′
pΣ̄

(h)
Y Jp, h = 1, . . . , h∗. (27)

The np × np covariance matrix Σ̄(h)
Y is defined from the difference equation

Σ̄(h)
Y = JpΣεJ

′
p + ΨΣ̄(h−1)

Y Ψ′, h = 1, . . . , h∗,

with the initial value Σ̄(0)
Y = 0. Based on posterior draws of the VAR parameters, the predictive

likelihood can be estimated with the IS estimator. Furthermore, the normal approximation of

the predictive likelihood in (14) can be computed for VAR models by utilizing equations (26)

and (27) along with the posterior parameter draws and the selection matrix S when computing

the predictive mean and covariance matrix in (12) and (13), respectively.

3.3. DSGE-VAR Models

The unobserved parameters of a VAR model are given by (Φ0,Φ1, . . . ,Φp,Σε), provided that the

prior distribution of the VAR does not include additional unobserved parameters. BVAR models

(see, e.g., Del Negro and Schorfheide, 2011, or Karlsson, 2012) typically include a number of

hyperparameters that are calibrated by the researcher and are therefore included in the model

index m. A well-known example when the model includes additional parameters through the

prior is a DSGE-VAR, where the parameters of the DSGE model appear.

An early attempt to combine DSGE models with VARs is Ingram and Whiteman (1994),

where the VAR parameters were expressed as a function of the DSGE model parameters. A prior

for the DSGE model parameters then implied a prior for the VAR parameters through a first-

order Taylor expansion of the mapping. This idea was considerably enriched by Del Negro and

Schorfheide (2004), where the prior distribution of the VAR model parameters was determined

from the DSGE model by parameterizing the distribution through the implied first and second

moments of the DSGE model.

DSGE-VARs may be indexed by a single parameter, λ, which determines the weight on the

prior relative to the data. The DSGE model approximation resides at one end of its range

(λ = ∞), an unrestricted VAR at the other end (λ = 0), and in between these two extremes

a large number of models exist. Apart from providing a measure of the degree to which the

DSGE model is misspecified, the approach also allows for posterior analysis of the DSGE model

parameters, impulse-response analysis, forecast-error-variance decompositions, and so on. While

these models were first designed to improve forecasting and monetary policy analysis with VARs,

the extension to a model evaluation toolkit was carried out by Del Negro and Schorfheide (2006),

while Del Negro et al. (2007) used it to assess the fit of a DSGE model.

When estimating the predictive likelihood for DSGE-VAR models with the IS estimator and

the normal approximation, we make use of the expressions provided for VAR models above.
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It should be kept in mind that Monte Carlo integration with respect to the parameters of a

DSGE-VAR involves all the VAR parameters and all the DSGE model parameters. In principle,

it is also possible to integrate out the influence of λ for a finite number of feasible values, but

such a model averaging-based approach is not considered below. Rather, we shall condition on

a posterior mode estimate of this parameter.

4. Comparing Forecast Accuracy: An Illustration for the Euro Area

In this Section we will illustrate how the predictive likelihood may be used to compare density

forecasts for linear models with normal conditional likelihoods. We begin by discussing the set of

models used for the exercise. They cover a medium-size DSGE model, developed at the European

Central Bank (ECB), which extends the Smets-Wouters model in an open-economy setting, two

DSGE-VAR models, a large BVAR model, as well as a multivariate random walk model, and

are discussed in 4.1. In 4.2 we thereafter turn our attention to a suitable metric for comparing

multi-period density forecasts based on the predictive likelihood, the log predictive score. The

last part of the Section, 4.3, presents the forecast sample and summarizes the empirical results

of the exercise. All calculations in this paper have been performed with the help of YADA, a

Matlab program for Bayesian estimation and evaluation of DSGE and DSGE-VAR models; see

Warne (2013) for details.

4.1. Structural and Nonstructural Models

4.1.1. The New Area-Wide Model of the Euro Area

The NAWM is a micro-founded open-economy model of the euro area designed for use in the

ECB/Eurosystem staff projections and for policy analysis; see Christoffel, Coenen, and Warne

(2008) for details. The development of this DSGE model has been guided by a principal consid-

eration, namely to provide a comprehensive set of core projection variables, including a number

of foreign variables, which, in the form of exogenous assumptions, play an important role in

the projections. As a consequence, the scale of the NAWM—compared with a typical DSGE

model—is rather large.

In order to estimate the model, Christoffel et al. (2008) use time series for 18 macroeconomic

variables and the data are taken from the Area-Wide Model database (Fagan, Henry, and Mestre,

2005) except for the time series of extra-euro area trade data (see Dieppe and Warmedinger,

2007, for details on their construction). The estimation sample is given by the period 1985Q1

until 2006Q4, with 1980Q2-1984Q4 serving as training sample.

The time series are displayed in Figure 1, where real GDP, private consumption, total in-

vestment, exports, imports, the GDP deflator, the consumption deflator, the import deflator,

nominal wages, foreign demand, and foreign prices are all expressed as 100 times the first differ-

ence of their logarithm. All other variables are expressed in logarithms except for the short-term

nominal domestic and foreign interest rates. A number of further transformations are made to
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ensure that variable measurement is consistent with the properties of the NAWM’s balanced-

growth path and in line with the underlying assumption that all relative prices are stationary.

First, the sample growth rates of extra-euro area exports and imports as well as foreign

demand are matched with the sample growth rate of real GDP. Second, for the logarithm of

government consumption a linear trend consistent with the NAWM’s steady-state growth rate of

2.0% per annum is removed. This trend is assumed to have two components: labor productivity

growth of 1.2% and labor force growth of 0.8%. Third, for the logarithm of employment a

linear trend consistent with a steady-state labor force growth rate of 0.8% is removed. Fourth,

a measure of the real effective exchange rate is constructed from the nominal effective exchange

rate, the domestic GDP deflator, and foreign prices (defined as a weighted average of foreign

GDP deflators) minus its sample mean. Finally, competitors’ export prices and oil prices (both

expressed in the currency basket underlying the construction of the nominal effective exchange

rate) are deflated with foreign prices before unrestricted linear trends are removed from the

variables.

4.1.2. DSGE-VAR Models with the NAWM as Prior

Christoffel et al. (2008) adopt the empirical approach outlined in Smets and Wouters (2003) and

An and Schorfheide (2007) and estimate the NAWM with Bayesian methods. The DSGE-VAR

models with the NAWM as prior have been estimated over the same sample with the random

walk Metropolis algorithm subject to a Gaussian proposal density.

We consider two approaches for selecting a DSGE-VAR model. The first chooses the model

with the largest marginal likelihood over all pairs (λ, p), while the second picks p such that the

marginal likelihood of the DSGE-VAR model with λ = ∞ (the VAR parameters are completely

determined from the DSGE model parameters) is the closest to the marginal likelihood of the

DSGE model and then selects λ optimally conditional on this p. The log marginal likelihood

values for a set of DSGE-VAR models, along with the NAWM, are displayed in Figure 2 and

have been calculated with the HM estimator based on the truncated normal density; see Geweke

(1999, 2005). We only consider lag orders between one and four.

It is noteworthy that for all lag orders p ≥ 2, the log marginal likelihood at λ = ∞ is higher

than the log marginal likelihood for the NAWM by a magnitude of 50 log-units or greater.

Compared with Del Negro et al. (2007), who use a model with seven observed variables, the

increase in marginal likelihood for the VAR approximation is very large. It should be kept in

mind, however, that Del Negro et al. (2007) add an error correction term to their VAR model

with the cointegration relations implied by their DSGE model. Consistent with the results

shown in Adolfson, Laséen, Lindé, and Villani (2008, Table 2), the error correction form of the

DSGE-VAR is likely to have a lower marginal likelihood than the pure DSGE-VAR when the

data is not well represented by the cointegration relations. Given the purpose of the current

paper, we do not see any need for adding cointegration relations to the DSGE-VAR at this stage.
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For the DSGE-VAR model with one lag only, the log marginal likelihood is lower at λ = ∞
than for the NAWM, with a reduction of about 11 log-units. Moreover, the marginal likelihood

for the optimal one-lag model (λ̂ = 1.25) is lower than, but close to, the marginal likelihoods

for the DSGE-VAR(∞) models with a higher lag order. Given these discouraging results for the

one-lag models, we have opted to drop them from the forecast comparison exercise.

From Figure 2 it can be seen that the posterior mode estimates of λ are positively related to

the selected lag order. Specifically, when we condition on two lags, the optimal value is λ̂ = 2.5,

while for three lags we obtain λ̂ = 4, and with four lags we get λ̂ = 6. One explanation for the

estimated relation between the optimal λ and the lag order is that the lower bound for the range

of eligible values, λL = (n(p+1)+1)/T , is increasing in the lag order. Another explanation may

be that when the lag order increases, the VAR model needs more dummy observations (λT ) to

better account for the loss of degrees of freedom from the observed sample.

With these results in mind, we have decided to allow the DSGE-VAR models (λ, p) = (2.5, 2)

(first model selection approach) and (λ, p) = (6, 4) (second model selection approach) to enter

the forecast comparison exercise.

4.1.3. VAR and Random Walk Models

We also consider a Bayesian VAR model for the same observed variables as the NAWM. The

usefulness of BVARs of the Minnesota-type for forecasting purposes has long been recognized, as

documented early on by Litterman (1986), and such models are therefore natural benchmarks

in forecast comparisons. Based on the results reported in CCW, we employ a large BVAR,

estimated using the methodology in Bańbura et al. (2010). This approach relies on using dummy

observations when implementing the normal-inverted Wishart version of the Minnesota prior.

Moreover, the prior mean of the parameters on the first own lag of the endogenous variables

(diagonal of Φ1) are either unity, if the variable is measured in log-levels or levels, and zero if it is

measured in log first differences. That is, the prior mean supports random walks for all variables

in log-levels or levels. In CCW, this large BVAR is referred to as the model with a mixed prior.

A more detailed description of this BVAR is found in the online appendix (Appendix B).

The last model we shall consider is a random walk for the vector yt with the NAWM variables.

For this model we make use of a standard diffuse prior for the covariance matrix of the random

walk innovations. That is, the vector yt − yt−1 = εt is i.i.d. Nn(0,Ω), where p(Ω) ∝ |Ω|−(n+1)/2.

One advantage of this model is that it allows for an analytical determination of the predictive

density. For marginal h-step-ahead forecasts of ys,T+h the predictive density is given by a ns-

dimensional t-distribution with mean yo
s,T , covariance matrix

h

T − n − 1

T∑
t=1

S′(yo
t − yo

t−1

)(
yo

t − yo
t−1

)′
S,

and T − n + ns degrees of freedom; see the online appendix (Appendix A) for details.
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4.2. The Log Predictive Score

A forecast comparison exercise is naturally cast as a decision problem within a Bayesian setting

and therefore needs to be based on a particular preference ordering. Scoring rules can be used

to compare the quality of probabilistic forecasts by giving a numerical value using the predictive

distribution and an event or value that materializes. A scoring rule is said to be proper if

a forecaster who maximizes the expected score provides its true subjective distribution; see

Winkler and Murphy (1968). If the maximum is unique then the rule is said to be strictly

proper.

A widely used scoring rule that was suggested by, e.g., Good (1952) is the log predictive score.

Based on the predictive density of Ys,T,h, it can be expressed as

Sh(m) =
T+Th−1∑

t=T

log p(Ys,T,h|Yo
t ,m), h = 1, . . . , h∗, (28)

where Th is the number of time periods the h-step-ahead predictive density is evaluated. If

the scoring rule depends on the predictive density only through the realization of the variables

of interest over the prediction sample, Yo
s,T,h, then the scoring rule is said to be local. Under

the assumption that only local scoring rules are considered, Bernardo (1979) showed that every

proper scoring rule is equivalent to a positive constant times the log predictive score plus a real

valued function that only depends on the realized data; see Gneiting and Raftery (2007) for a

recent survey on scoring rules.

When comparing the density forecasts of the NAWM, the two DSGE-VAR models, the large

BVAR, and the multivariate random walk model we will evaluate the log predictive score in (28)

with realizations for different subsets of the observables Yo
s,T,h = yo

s,t+h. Hence, the predictive

likelihood for each model and time period is marginalized with respect to the forecast horizon

and the variables of interest in the subset. This allows us to utilize the algorithms discussed in

Section 3 for the DSGE and VAR models, while the predictive likelihood for the multivariate

random walk is, as noted above, analytically determined. Moreover, the log predictive score is

optimal in the sense that it uniquely determines the model ranking among all local and proper

scoring rules. However, there is no guarantee that it will pick the same model as the forecast

horizon or the selected subset of variables changes.

4.3. Density Forecasts

4.3.1. Forecast Sample and Selection of Variables

The first pseudo out-of-sample forecasts are computed for 1999Q1—the first quarter after the

introduction of the euro—while the final period is 2006Q4. The maximum forecast horizon is

eight quarters, yielding 32 quarters with one-step-ahead forecasts and 25 quarters with eight-

step-ahead forecasts. We shall only consider forecasts of quarterly growth rates for the variables

in first differences, while CCW also study forecasts of annual growth rates for such variables. The
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Kalman filter based forecasts can be adjusted to handle such transformations of the variables;

see Warne (2013, Section 12.6.1).

Concerning the selection of variables in the subsets of the observables we follow CCW and

exclude the variables which are essentially exogenous in the NAWM. That is, we do not compare

density forecasts which include the five foreign variables (foreign demand, foreign prices, foreign

interest rate, competitors’ export prices, and oil prices) and government consumptions. For

the remaining 12 variables we examine three nested subsets. The smallest subset is called the

small selection and is given by real GDP, the GDP deflator, and the short-term nominal interest

rate. This selection may be regarded as the minimum set of variables relevant to monetary

policy. The second case covers a medium selection with the seven variables studied in Smets and

Wouters (2003). In addition to the variables in the small selection, this selection covers private

consumption, total investment, employment, and nominal wages. Finally, the large selection has

12 variables, given by the medium selection plus exports, imports, the import price deflator, the

private consumption deflator, and the real effective exchange rate.

4.3.2. Empirical Results

The log predictive scores based on the IS estimator of the marginal h-step-ahead predictive

likelihoood are shown in Figure 3 for all variable selections, forecast horizons, and models. For the

NAWM and the two DSGE-VAR models we have used 10,000 posterior draws among the available

500,000 post burn-in draws for each model and time period when calculating the log predictive

likelihood. These draws have been selected as draw number 1, 51, . . . , 499951 to combine modest

computational costs with a small correlation between the draws and a sufficiently high estimation

accuracy. This procedure yields estimates of the log predictive likelihood that are accurate up

to and including the first decimal. In the case of the NAWM, the numerical standard error of

the IS estimator based on the Newey and West (1987) approach is less than 0.04 for the shortest

historical sample and the large selection. For the same sample and the medium selection, it is

less than 0.03, and for the small selection less than 0.015. As the length of the historical sample

increases, the numerical standard errors decrease. Moreover, the numerical standard errors for

the DSGE-VAR models are even smaller.

In the case of the random walk model, the predictive likelihood for a selection of variables is

multivariate t and can therefore be computed from its analytical expression. Direct sampling is

possible for the BVAR model through its normal-inverted Wishart posterior and we have used

50,000 draws from its posterior distribution when computing the predictive likelihood with the

IS estimator.

When comparing the NAWM with the two DSGE-VAR models, it is noteworthy that the

DSGE-VAR model with two lags generally obtains higher log scores for all horizons and variable

selections, with values for the four-lag model being slightly below those for the two-lag model,

while the NAWM gets smaller values. At the longer horizons, the NAWM obtains values that are

near those of the DSGE-VAR models and, in the case of the small selection, even slightly higher.
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Hence, it seems that taking misspecification of the NAWM into account through DSGE-VAR

models improves forecasting performance, especially at the shorter horizons.

It is also worth pointing out that the random walk model is competitive with the NAWM

and the DSGE-VAR models for the one-step-ahead forecasts, especially for the small selection.

As the forecast horizon increases, however, the random walk model’s performance worsens in

comparison with these alternatives.

Compared with the BVAR model, however, the NAWM and the two DSGE-VARs are outper-

formed for all selections and forecast horizons. For example, the difference between the log score

of the BVAR and the DSGE-VAR with two lags is at least 27 log-units for the large selection

and 40 log-units for the medium selection. The only exception is found for the small selection at

the longer horizons, where the differences are about 4-5 log-units for eight-step-ahead forecasts.

Nevertheless, if the log predictive score is employed as a model-selection device it would prefer

the BVAR to the other models for all selections and forecast horizons. The interested reader is

referred to Warne, Coenen, and Christoffel (2013) for additional details on the results.

To address the issue of how well the normal approximation works for these linear Gaussian

models, the log predictive scores for this estimator are displayed in Figure 4. The most prominent

feature is how similar these graphs are when compared to those in Figure 3. In fact, the

IS estimator and the normal approximation suggest the same ranking of the models for each

selection and forecast horizon except for the DSGE-VAR models with the small selection and

the eight-step-ahead forecasts. For this particular case, however, the difference in log predictive

scores is so small that the models may be viewed as equally good (or bad). The differences in

log marginal likelihood between the IS estimator and the normal approximation for all models,

forecast horizons, and selections of variables are documented in Table 1.

The differences between the IS estimator and the normal approximation of the log predictive

score for the NAWM and the two DSGE-VAR models are positive for all forecast horizons and

variable selections. The results for the BVAR are mixed with a tendency for positive errors,

while for the random walk model the differences are always positive. In terms of log-units, the

largest errors for the DSGE related models are obtained for the DSGE-VAR with two lags but

are never greater than about 4.3 log-units. For the NAWM, the DSGE-VAR with four lags,

and the BVAR the errors are about half the size in magnitude. Furthermore, when comparing

the differences between the estimates of the log predictive likelihood for the individual forecast

periods and horizons, the overall errors are evenly spread out for the NAWM and the two DSGE-

VAR models, while the BVAR tends to display larger deviations between the estimates when

the log predictive likelhood values are smaller. Further details are shown in Warne et al. (2013).

Since the normal approximation provides a good approximation of the actual predictive like-

lihood for the five models and the three variable selections, we can utilize equations (14)–(16) in

Section 2.4 to assess if the ranking of the models is driven by forecast uncertainty or by forecast

errors. The forecast uncertainty term in equation (15) of the decomposition of the log predictive
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likelihood is depicted in Figure 5 for the five models, eight forecast periods, and each relevant

period in the prediction sample for the large selection of variables. Analogously, the quadratic

standardized forecast error term in equation (16) is displayed in Figure 6 for the same cases.

Although the discussion below focuses on the large selection of variables, the overall findings are

also valid for the medium and small selections.

Turning first to the forecast uncertainty term in Figure 5 it can be seen that for all models

and forecast horizons it is weakly upward sloping over the forecast sample and that the slope is

roughly equal across the five models. This indicates that overall forecast uncertainty is slowly

decreasing as data are added to the information set. The values for the BVAR model are roughly

5 log-units higher in each period than for the second group of models, given by the two DSGE-

VARs and the NAWM. The random walk model has the lowest values for all forecast horizons

and the difference relative to the second group of models is increasing with the forecast horizon.

Since the log-determinant in the expression for Ds,T+h is equal to the sum of the log of the

eigenvalues of the forecast error covariance matrix, the value of the log-determinant term is

greater the smaller the eigenvalues of this matrix are. The eigenvalues in turn are small for

linear combinations of the variables that, according to the model, are highly predictable. The

plots in Figure 5 show that the BVAR model has better predictability in terms of the second

moments than the other models. The DSGE-VARs with two and four lags and the NAWM

follow as second, third, and fourth, while the random walk comes last.

Turning to the quadratic standardized forecast error term in Figure 6, it can be seen that the

time variation of the log predictive likelihood is due to the forecast errors. This is not surprising

since the covariance matrix of the predictive distribution changes slowly and smoothly over time

while the forecast errors are more volatile. Moreover, the ranking of the models is to some extent

reversed, particularly with the BVAR having much larger standardized forecast errors than the

other models over the first half of the forecast sample. With the exception of the random walk

model, this is broadly consistent with the findings for the point forecasts; see Warne et al.

(2013). The reversal in rankings for the forecast error term can also be understood from the

behavior of second moments, where a given squared forecast error yields a larger value for this

term the smaller the uncertainty linked to the forecast is. Nevertheless, when compared with

the forecast uncertainty term the differences between the models are generally smaller for the

forecast error term. This suggests that the model ranking based on the log predictive score is

primarily determined by the second moments of the predictive distribution in this illustration.

5. Summary and Conclusions

This paper develops and applies tools for computing and comparing density forecasts based

on the predictive likelihood using Bayesian methods. As pointed out by Geweke and Amisano

(2010, p. 217), the predictive likelihood function
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“. . . lies at the heart of Bayesian calculus for posterior model probabilities, re-

flecting the logical positivism of the Bayesian approach: a model is as good as

its predictions.”

While the calculation of posterior model probabilities requires that the “true” model exists among

the set of models under consideration, model selection through the posterior odds ratio remains

valid also when all of the models are false.

The predictive likelihood can be applied to rank models in a forecast comparison exercise

via the log predictive score, but may also be used more generally as a model selection device,

to determine weights in a model averaging exercise, or when constructing optimal prediction

pools under a Bayesian approach. The paper suggests that the marginalized h-step-ahead pre-

dictive likelihood for parametric time series models can be computed via missing observations

techniques. As a consequence, the approach makes it possible to calculate the marginalized

predictive likelihood for any subset of the variables that a model can predict, including a single

variable, as well as the joint predictive likelihood for a subset of the variables. Accordingly,

marginal and joint density forecasts for shared variables can be compared across models with

different dimensions and different conditioning information. In the case of linear time series

models with Gaussian innovations, the method is implemented as a missing observations con-

sistent Kalman filter. For nonlinear and nonnormal models, a missing observations consistent

filter, such as the particle filter, serves the same objective.

Once the predictive likelihood at a value of the parameters (the conditional likelihood) can

be computed, the paper suggests using Monte Carlo integration over the posterior draws of the

parameters to obtain an estimate of the predictive likelihood. This has the interpretation of

being an importance sampling (IS) estimator of the predictive likelihood, where the posterior

sampler using only historical information generates draws from the importance density. The

IS estimator is both consistent and unbiased, while a harmonic mean based estimator of the

predictive likelihood would require an additional set of posterior parameter draws to be consis-

tent, yet remaining biased. However, the simple IS estimator with the posterior as importance

density is less likely to work well when examining joint forecasts spanning a long horizon with

many variables. For such cases, the posterior draws are less likely to cover well enough the

parameter region where the conditional likelihood is large and it may instead be pertinent to

apply a cross-entropy method for selecting the importance density optimally.

In the empirical illustration with five linear Gaussian models, the IS estimator of the predictive

likelihood is compared with a normal approximation, constructed from the mean vector and the

covariance matrix of the predictive distribution. The analysis is an extension of the CCW study

for euro area data and compares the results for the NAWM, two DSGE-VAR models with the

NAWM as prior, a large BVAR, and a multivariate random walk model. The DSGE-VAR models

were not included in CCW and are used to relax the cross-equation restrictions of the NAWM,

while the random walk model is an extension of model in CCW to a Bayesian framework.
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Over the forecast sample 1999Q1–2006Q4 we find that the normal density provides a good

approximation of the predictive likelihood when examining the density forecasts for the five

models. The “true value” of the predictive likelihood is represented by the IS estimator for

all models except the random walk, whose predictive density is multivariate t and is therefore

analytically determined. In terms of a model ranking, the log predictive score (the sum of the

log predictive likelihood over the forecast sample) strongly favors the BVAR model, with the

two DSGE-VAR models improving somewhat on the density forecasts of the NAWM, especially

at the shorter horizons. The random walk model, on the other hand, is only competitive with

the NAWM at the one-step-ahead horizon, especially for the variable selection with real GDP

growth, GDP deflator inflation, and the short-term nominal interest rate only.

When the error from using a normal approximation of the predictive likelihood relative to

the IS estimator is small, then the analytical form of the normal can be utilized to assess

which feature of the predictive likelihood is driving the ranking of models. Specifically, the

normal approximation allows for a simple decomposition of the predictive likelihood into the

contributions of forecast uncertainty and forecast errors. The former term is specified via the

determinant of the forecast error covariance matrix, while the latter term is determined through

the quadratic standarized forecast errors. This decomposition suggests that the model ranking

in the empirical illustration is primarily influenced by the forecast uncertainty term, while the

forecast errors are mainly responsible for the volatility in the predictive likelihood.
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Table 1: Difference between log predictive score using the IS estimator and the
normal approximation over the evaluation period 1999Q1–2006Q4.

DSGE-VAR

horizon NAWM (2.5; 2) (6; 4) BVAR RW

Large selection (12 variables)

1 1.37 2.47 1.50 2.37 5.98

2 1.39 3.52 1.88 0.25 8.78

3 1.58 3.95 2.17 0.25 9.81

4 1.82 3.68 2.27 2.92 8.81

5 2.12 3.52 2.35 0.69 8.45

6 2.31 3.43 2.10 2.11 8.44

7 2.17 3.39 1.82 2.54 7.86

8 2.13 3.27 1.79 2.46 7.50

Medium selection (seven variables)

1 0.93 1.57 0.92 −1.62 3.24

2 1.31 2.68 1.48 −1.28 4.04

3 1.63 3.20 1.95 −1.06 4.36

4 1.81 3.47 2.19 0.06 3.97

5 2.04 3.76 2.29 −1.10 3.82

6 1.96 3.91 2.20 −0.29 3.99

7 1.90 4.13 2.23 −0.63 3.82

8 1.77 4.31 2.21 −0.38 3.72

Small selection (three variables)

1 0.70 0.68 0.40 −0.58 0.67

2 0.93 1.08 0.54 −0.50 0.84

3 1.04 1.28 0.72 0.11 1.11

4 1.03 1.31 0.76 0.38 1.00

5 1.00 1.35 0.73 0.34 0.90

6 0.86 1.36 0.64 0.42 1.02

7 0.80 1.38 0.64 0.56 0.98

8 0.75 1.46 0.68 0.76 0.98

Note: The log predictive likelihood for the random walk model is calcu-
lated with its analytical expression; see the online appendix (Appendix A)
for details. For the NAWM and the DSGE-VAR models, 10,000 poste-
rior draws have been taken from the available 500,000 post burn-in draws
for each time period. The used draws have been selected as draw number
1, 51, 101, . . . , 499951. For the BVAR direct sampling is possible and 50,000
posterior draws have been used; see the online appendix (Appendix B).
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Figure 1: The data.
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Note: This figure shows the time series of the observed variables used in the estimation of the NAWM. Details
on the variable transformations are provided in Christoffel, Coenen, and Warne (2008, Section 3.2) or Section 2.3
in CCW. Inflation and interest rates are reported in annualized percentage terms.
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Figure 2: Marginal likelihood as a function of λ for different lag orders.
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Figure 3: Log predictive scores using the IS estimator.
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Note: The log predictive likelihood for the random walk model is calculated with its analytical expression.

Figure 4: Log predictive scores using the normal approximation.
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Figure 5: The evolution of the forecast uncertainty term of the normal density
for the large selection of variables.
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Figure 6: The evolution of the quadratic standardized forecast error term of
the normal density for the large selection of variables.
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