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Summary: In a Bayesian setting, the predictive likelihood is of particular relevance when
the objective is to rank models in a forecast comparison exercise. We discuss how the
predictive likelihood can be estimated, by means of marginalization, for any subset of the
observable variables in linear Gaussian state-space models and propose to utilize a missing
observations consistent Kalman filter for that purpose. Based on this convenient and
simple approach, we analyze euro area data and compare the density forecast performance
of a DSGE model to a DSGE-VAR, a large BVAR, and a multivariate random walk model
over the forecast sample 1999Q1–2011Q4. While the BVAR generally provides superior
density forecasts, its performance deteriorates substantially with the onset of the Great
Recession. This is particularly notable for longer-horizon real GDP forecasts, where the
DSGE and DSGE-VAR models with stronger economic foundations perform better. In
fact, for longer horizons the ranking of models changes over the forecast sample when
the focus is on a subset of variables comprising real GDP growth, GDP deflator inflation,
and the nominal interest rate.

Keywords: Bayesian inference, density forecasting, Kalman filter, missing data, Monte
Carlo integration, predictive likelihood.

1. Introduction

In Bayesian analysis of (discrete) time series, the predictive likelihood can be employed to

compare forecast accuracy across models. A problem occurs when the models included in
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the exercise predict different observables, but where some of these variables are shared by

all models. For example, suppose there are two models to compare, where the first can

predict the future values of the observables y1, y2, and y3, while the second can predict the

future values of y1 and y4. To compare the forecast performance of these two models with

the predictive likelihood requires that the likelihoods can be marginalized with respect to

the non-shared variables, i.e. that the future values of y2 and y3 are integrated out from the

predictive likelihood of the first model, while y4 is integrated out for the second model. The

same basic marginalization problem arises when a forecaster or policy maker is concerned

with only some of the variables that a set of models can predict.

The marginalization problem may be solved by applying textbook results when the joint

predictive likelihood of a model has a known distributional form, for instance a Student

t. However, models with a known predictive distribution are rare and in the typical case

when this distribution is unknown, we can instead make use of the fact that the predictive

likelihood is equal to the integral of the conditional likelihood times the posterior density

with respect to the model parameters. Here, by conditional likelihood we refer to the

predictive likelihood conditional on a value for the parameters. If this likelihood is based on

a distribution where marginalization can be handled analytically, then the marginalization

problem of the predictive likelihood can be solved at this stage. What thereafter remains

to be done is to integrate out the dependence on the parameters, a topic closely related to

the estimation of the marginal likelihood; see, e.g., Geweke (2005).

In this paper we suggest a convenient and simple recursive approach to marginalizing

the conditional likelihood in linear Gaussian discrete-time state-space models, namely to

use a missing observations consistent Kalman filter. Since this approach builds up the

marginalized parts of only the relevant arrays, it is computationally simpler than the

approach in, e.g. Andersson and Karlsson (2008), which involves first calculating the mean

and the covariance matrix of the joint conditional distribution and thereafter reducing
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these to the entries relevant for the marginalized conditional likelihood; see also Karlsson

(2013, Section 8.2.1), and Amisano and Geweke (2013).1

In Christoffel, Coenen, and Warne (2011)—henceforth, CCW—we followed the normal

approximation approach suggested by Adolfson, Lindé, and Villani (2007b) for computing

the marginalized predictive likelihood2 when comparing the density forecasts of the ECB’s

New Area-Wide Model (NAWM) to various alternatives.3 This pseudo out-of-sample fore-

cast comparison exercise covered the period after the introduction of the euro and ended

in 2006Q4, focusing on three nested partitions of the 12 (out of 18) observable variables

that are endogenously determined in the NAWM.

In the novel application of the current paper, we enhance the forecast comparison ex-

ercise in CCW in several ways. First, while the forecast sample begins in 1999Q1, as in

CCW, the end point is extended from 2006Q4 to 2011Q4, thereby allowing us to study

how the models compare in terms of forecasting performance during and after the onset of

the Great Recession. Second, we assess the results from using the normal approximation

of the predictive likelihood to those obtained from an estimator of the predictive likelihood

based on Monte Carlo integration of the marginalized conditional likelihood with respect

to posterior draws of the model parameters. Furthermore, we include in this setting a

DSGE-VAR with the NAWM as prior and compare the density forecast performance of

1 The Kalman filter based approach suggested in our paper has been applied in a more recent paper by
Del Negro, Hasegawa, and Schorfheide (2014).
2 In their empirical forecasting study, Adolfson, Lindé, and Villani (2007b) discuss this marginalization
problem in the context of marginal likelihoods. Specifically, the authors first note that the joint predictive
likelihood (for all observables in a model over T + 1 until T + h) is equal to the ratio of the marginal
likelihood of the historical sample (up to time T ) and the forecast sample (between time T +1 and T +h),
and the marginal likelihood of the historical sample only; see equation (5.3) in Adolfson, Lindé, and Villani.
While the marginal likelihood for the whole sample may be decomposed into a sequence of intermediate
non-overlapping joint predictive likelihoods, they also mention that the marginal likelihood cannot be
decomposed into terms of the marginal h-step-ahead predictive likelihood when h > 1. They therefore
conclude that the marginal likelihood cannot detect whether some models perform well on certain forecast
horizons while other models do better on other horizons; see the last paragraph on page 324 of Adolfson,
Lindé, and Villani. Since the number of variables included in their density forecast comparison exercise
is large, the authors claim that kernel density estimation of the predictive likelihood is not practical,
and instead they assume that the predictive likelihood for marginal h-step-ahead forecasts is multivariate
normal and estimate the mean vector and the covariance matrix from the predictive sample.
3 See Christoffel, Coenen, and Warne (2008) for details about the NAWM, an open-economy DSGE model
of the euro area.
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the DSGE model to this DSGE-VAR model, as well as to a BVAR from CCW, and a

multivariate random walk model estimated with Bayesian methods.

The remainder of the paper is organized as follows. Section 2 introduces notation and

presents concepts related to the predictive likelihood. Section 3 focuses on linear state-

space models with Gaussian innovations and shows how the conditional likelihood can be

marginalized via a Kalman filter that takes into account missing observations. Section 4

presents the empirical density forecast comparison exercise, while Section 5 summarizes

the main findings of the paper.

2. The Predictive Likelihood

To establish notation, let θm ∈ Θm be a vector of unknown parameters of a model indexed

by m, while YT = {y1, y2, . . . , yT } is a real-valued time series of an n-dimensional vector of

observables yt. The observed value of this vector of random variables is denoted by yo
t , while

the sample of observations is similarly denoted by Yo
T . The observables’ density function is

given by p(YT |θm,m), while the likelihood function is denoted by p(Yo
T |θm,m). Bayesian

inference is based on combining a likelihood function with a prior distribution, p(θm|m),

in order to obtain a posterior distribution of the model parameters, p(θm|Yo
T ,m). From

Bayes theorem we know that the posterior is equal to the posterior kernel (the product of

the likelihood and the prior) divided by the marginal likelihood, denoted by

p
(Yo

T

∣∣m)
=

∫
Θm

p
(Yo

T

∣∣θm,m
)
p
(
θm

∣∣m)
dθm. (1)

The marginal likelihood is a standard measure to compare how well different models fit

the data in Bayesian analysis and for each model m it is a joint assessment of how well the

prior and likelihood agrees with the observations.

Point and density forecasts are determined from the predictive density of model m. For a

sequence of future values of the observable variables YT,h = {yT+1, . . . , yT+h}, this density
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can be expressed as

p
(YT,h

∣∣Yo
T ,m

)
=

∫
Θm

p
(YT,h

∣∣Yo
T , θm,m

)
p
(
θm

∣∣Yo
T ,m

)
dθm, (2)

where T increases as additional data points are added to the historical sample in a recursive

forecast exercise. The joint predictive likelihood of model m is equal to the predictive

density in (2) evaluated at the observed values Yo
T,h = {yo

T+1, . . . , y
o
T+h}.

Suppose that we are only interested in forecasting a subset of the variables YT,h, denoted

by Ys,T,h = {ys,T+1, . . . , ys,T+h}, where ys,T+i = S′
iyT+i, and Si is an n×ni selection matrix

with ni ∈ {0, 1, . . . , n} for i = 1, . . . , h. Hence, the subset of variables in ys,T+i is the same

for each time period T + i when i is fixed and T varies, while the subset of variables can

vary for different i.4 In addition, let y−s,T+i denote the remaining variables in yT+i, i.e.

y−s,T+i = S′
i,⊥yT+i with S′

i,⊥Si = 0, while S′
iSi = Ini and S′

i,⊥Si,⊥ = In−ni .

The marginalized predictive density of Ys,T,h can be expressed as

p
(Ys,T,h

∣∣Yo
T ,m

)
=

∫
Θm

p
(Ys,T,h

∣∣Yo
T , θm,m

)
p
(
θm

∣∣Yo
T ,m

)
dθm, (3)

where we have made use of (2), and where

p
(Ys,T,h

∣∣Yo
T , θm,m

)
=

∫
· · ·

∫
p
(YT,h

∣∣Yo
T , θm,m

)
dy−s,T+1 · · · dy−s,T+h. (4)

The marginalized predictive likelihood is given by (3) when evaluated at the observed

values Yo
s,T,h, while equation (4) is then called the marginalized conditional likelihood.

The order in which the parameters θm and the variables y−s,t are integrated out can

of course be reversed when determining the left hand side of (3). However, the precise

density function which determines the conditional likelihood is typically an integral part of

4 Hence, Si does not need to be the same as or have the same dimension as Sj when i �= j, with the
consequence that different subsets of observables may be included in ys,T+i and ys,T+j when i and j are
fixed, while T may vary.

– 5 –



the model assumptions in a Bayesian setting, suggesting that this function may be “easier”

to operate on when attempting to integrate out the dependence on the variables y−s,t than

the joint predictive density, which will generally not be of a known type.

The marginalized predictive likelihood can alternatively be expressed as the ratio of two

marginal likelihoods:

p
(Yo

s,T,h

∣∣Yo
T ,m

)
=

p
(Yo

s,T,h,Yo
T

∣∣m)
p
(Yo

T

∣∣m) . (5)

The denominator is here given by equation (1), while the numerator is

p
(Yo

s,T,h,Yo
T

∣∣m)
=

∫
Θm

p
(Yo

s,T,h

∣∣Yo
T , θm,m

)
p
(Yo

T

∣∣θm,m
)
p
(
θm

∣∣m)
dθm. (6)

Again we see that the computation of the marginalized predictive likelihood depends on

being able to evaluate the marginalized conditional likelihood.

In the next section we suggest an approach to marginalizing the conditional likelihood

in equation (4) for Yo
s,T,h which applies to linear Gaussian state-space models and which

is simple, fast, and robust. Once this likelihood has been determined, the problem of

calculating the marginalized predictive likelihood in (3) for Yo
s,T,h, or via (5), generally

depends on selecting an appropriate numerical method for integrating out the dependence

on the parameters. Consequently, estimation of the predictive likelihood is closely related

to the problem of estimating the marginal likelihood; see, e.g., Geweke (2005).

3. Marginalizing the Predictive Likelihood in Linear Gaussian State-Space

Models

3.1. Marginalizing the Conditional Likelihood

Standard linear time series models—including VAR models, VARMA models, dynamic

factor models, and other unobserved component models—may be cast in state-space form.
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Structural models, such as log-linearized DSGE models and other linear rational expec-

tations models, also have such a representation provided that a unique and convergent

solution exists for a given value of the underlying parameter vector.5

To establish some further notation, let the observable variables yt be linked to a vector

of state variables ξt of dimension r through equation

yt = µ + H ′ξt + wt, t = 1, . . . , T. (7)

The errors, wt, are assumed to be i.i.d. N(0, R), with R being an n×n positive semidefinite

matrix, while the state variables are determined from a first-order VAR system:

ξt = Fξt−1 + Bηt, t = 1, . . . , T. (8)

The state shocks, ηt, are of dimension q and i.i.d. N(0, Iq), while F is an r× r matrix, and

B is r × q. The parameters of this model, (µ,H,R,F,B), are all uniquely determined by

θm. Provided that H ′ξt is stationary, the vector µ is the population mean of yt conditional

on θm.

The system in (7) and (8) is a state-space model, where equation (7) gives the measure-

ment or observation equation and (8) the state or transition equation. Provided that the

number of measurement errors and state shocks is large enough and an assumption about

the initial conditions is added, we can calculate the likelihood function with a suitable

Kalman filter; see, e.g., Harvey (1989) and Durbin and Koopman (2012) for details.6

Suppose that we are interested in forecasting the subset of variables Ys,T,h with the state-

space system and that we have the observed values Yo
s,T,h. The log of the marginalized

conditional likelihood can now be determined via a missing observations consistent Kalman

5 Sargent (1989) was among the first to recognize that linear rational expectations models can be expressed
in state-space form.
6 It is straightforward to generalize the system in (7) and (8) to allow for, e.g., time variation of the
matrices and apply the ideas presented in this paper.
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filter. We here find for h ≥ 1

log p
(Yo

s,T,h

∣∣Yo
T , θm,m

)
=

h∑
i=1

log p
(
yo

s,T+i

∣∣Yo
s,T,i−1,Yo

T , θm,m
)
, (9)

where Yo
s,T,0 is empty by definition. If ni ≥ 1 the marginalized conditional log-likelihood

value at T + i is

log p
(
yo

s,T+i

∣∣Yo
s,T,i−1,Yo

T , θm,m
)

= −ni

2
log(2π) − 1

2
log

∣∣Σys,T+i|T+i−1

∣∣

−1
2

(
yo

s,T+i − ys,T+i|T+i−1

)′ Σ−1
ys,T+i|T+i−1

(
yo

s,T+i − ys,T+i|T+i−1

)
,

(10)

while it is zero when ni = 0.

The ni-dimensional vector of forecasts ys,T+i|T+i−1 and its forecast error covariance

matrix Σys,T+i|T+i−1 are directly obtained from the missing observations consistent Kalman

filter. This filter is well known and we therefore refer the interested reader to, e.g., Harvey

(1989) or Durbin and Koopman (2012); see also the online appendix (Appendix C). Such an

approach generates a bottom-up evaluation of the marginalized conditional likelihood. Since

the joint conditional likelihood for Yo
T,h is normal, the marginalized conditional likelihood

for Yo
s,T,h is also normal with mean and covariance obtained by selecting the appropriate

elements from the mean vector and covariance matrix of the joint predictive distribution

conditional on the parameters. This property is used by, for instance, Andersson and

Karlsson (2008), when estimating the marginalized predictive likelihood for VAR models

via the conditional likelihood. When h is large, such a top-down approach to evaluating the

marginalized conditional likelihood is expected to be slower than the bottom-up Kalman

filter evaluation presented above, especially when the evaluations are repeated many times.

Note also that the bottom-up and top-down approaches coincide only in the case of one-

step-ahead forecasts.
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3.2. Estimating the Marginalized Predictive Likelihood

Once the problem of evaluating the marginalized conditional likelihood has been addressed,

we proceed with the second step in the estimation of the marginalized predictive likelihood,

which involves integrating out the dependence on the parameters. It is assumed below that

an ergodic sequence of parameter draws are available from the posterior distribution.

In the empirical application in Section 4 we apply a simple Monte Carlo (MC) integration

method to estimate the predictive likelihood. Specifically, we use:

p̂MC

(Yo
s,T,h

∣∣Yo
T ,m

)
=

1
N

N∑
j=1

p
(Yo

s,T,h

∣∣Yo
T , θ(j)

m ,m
)
, (11)

where θ
(j)
m is a draw from the posterior density p(θm|Yo

T ,m) for j = 1, . . . , N .7 Under

certain regularity conditions (Tierney, 1994), the right hand side of (11) converges almost

surely to the expected value of p(Yo
s,T,h|Yo

T , θm,m) with respect to p(θm|Yo
T ,m), i.e. to

the predictive likelihood p(Yo
s,T,h|Yo

T ,m). Hence, equipped with the posterior draws, the

marginalized predictive likelihood can be consistently estimated from the sample average

of the marginalized conditional likelihood. A further property of this estimator is that it

is unbiased (see Chan and Eisenstat, 2015, Proposition 1).8

The MC estimator in (11) is expected to work well in practise when the posterior draws

cover well enough the parameter region where the marginalized conditional likelihood is

large. This is more likely to be the case when the dimension of Ys,T,h is fairly small and

h is not too large, but it is not obvious when one or both of these properties is not met.

Clearly, when Si = In for all h and the latter is sufficiently large, the situation resembles

the case where the marginal likelihood is estimated by averaging the likelihood over draws

from the prior distribution, and such an estimator is expected to be poor.

7 Andersson and Karlsson (2008) also use the estimator in (11) and refer to it as the Rao-Blackwellized
estimate of p(Ys,T,h|Yo

T , m); see also Karlsson (2013).
8 The numerical standard error of (11) can be calculated using the Newey and West (1987) estimator when
the posterior draws θ

(j)
m and θ

(j+1)
m are correlated.
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As an alternative, one may therefore consider standard methods for calculating the

marginal likelihood, such as harmonic mean estimators; see Gelfand and Dey (1994), the

truncated normal version in Geweke (2005), or the extension to a truncated elliptical in

Sims, Waggoner, and Zha (2008). Such estimators require two sets of posterior draws to be

consistent. Namely, apart from the θ
(j)
m draws based on the data Yo

T , we would also need

posterior draws θ
(i)
m using the data (Yo

s,T,h,Yo
T ). The former posterior draws are used to

estimate the marginal likelihood in (1), the latter posterior draws are needed to estimate

the marginal likelihood in (6), while the marginalized predictive likelihood is estimated

by the ratio of these two estimates; see equation (5). As a consequence, harmonic mean

estimators of the marginalized predictive likelihood are more time consuming than the MC

estimator in (11). However, since the harmonic mean estimators take the data Yo
s,T,h into

account, they are less likely to be hampered by a large dimension of the set of predicted

values or a long forecast horizon. Other methods, such as bridge sampling may also be

considered; see, e.g., Meng and Wong (1996). Evaluating these options is beyond the scope

of this paper, but it is an important topic for future reasearch.

4. Comparing Forecast Accuracy: An Application to Euro Area Data

In this section we compare marginalized h-step-ahead density forecasts for three subsets

of observables and across four linear Gaussian state-space models for euro area data using

the approach discussed in Section 3. In Section 4.1 we discuss the models: a DSGE model,

a DSGE-VAR model, a large BVAR model, as well as a multivariate random walk model.

In Section 4.2, we present the forecast sample and summarize the empirical results of the

exercise. The calculations below have to a large extent been performed with the help of

YADA, a Matlab program for Bayesian estimation and evaluation of DSGE and DSGE-

VAR models; see Warne (2015) for details.
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4.1. Empirical Models

4.1.1. The New Area-Wide Model of the Euro Area

Since the turn of the century, we have witnessed the development of a new generation

of DSGE models that build on explicit micro-foundations with optimizing agents. Major

methodological advances allow the estimation of variants of these models that are able to

compete, in terms of data coherence, with more standard time series models, such as VARs;

see, among others, the empirical models in Christiano, Eichenbaum, and Evans (2005),

Smets and Wouters (2003, 2007), and Adolfson, Laséen, Lindé, and Villani (2007a). Efforts

have also been undertaken to bring these models to the forecasting arena with promising

results; see, for example, CCW, Del Negro and Schorfheide (2013), Smets, Warne, and

Wouters (2014), Wolters (2015), and references therein.

In our application, we extend the forecasting comparison exercise in CCW using the

New Area-Wide Model (NAWM) of the ECB. With Et being the rational expectations

operator, the NAWM, like other log-linearized DSGE models, can be written as:

A−1ξt−1 + A0ξt + A1Etξt+1 = Dηt, t = 1, 2, . . . , T, (12)

where ηt is a q-dimensional vector with i.i.d. standard normal structural shocks (ηt ∼

N(0, Iq)), while ξt is an r-dimensional vector of model variables. The matrices Ai (r × r),

with i = −1, 0, 1, and D (r × q) are functions of the vector of DSGE model parameters.

Provided that a unique and convergent solution of the system (12) exists at a particular

value of these parameters,9 we can express the model as the first order VAR system in (8).

The NAWM is a micro-founded open-economy model of the euro area designed for use

in the ECB/Eurosystem staff projections and for policy analysis; see Christoffel, Coenen,

and Warne (2008) for details. The development of this DSGE model has been guided by a

9 See, e.g., Anderson (2010), Klein (2000), or Sims (2002) for methods of solving linear rational expectations
models.
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principal consideration, namely to provide a comprehensive set of core projection variables,

including a number of foreign variables, which, in the form of exogenous assumptions, play

an important role in the projections. As a consequence, the scale of the NAWM—compared

with a typical DSGE model—is rather large.

Christoffel et al. (2008) adopt the empirical approach outlined in Smets and Wouters

(2003) and An and Schorfheide (2007) and estimate the NAWM with Bayesian methods,

using time series for 18 macroeconomic variables. The estimation sample in Christoffel

et al. (2008) is given by the period 1985Q1 until 2006Q4, with 1980Q2–1984Q4 serving as

training sample.

In our application, we extend the sample to 2011Q4, also taking into account the changes

in country composition of the euro area, and reestimate the model with the new data, using

the same training sample as in CCW and Christoffel et al. (2008). The time series for the

sample 1985Q1–2011Q4 are displayed in Figure 1, where real GDP, private consumption,

total investment, exports, imports, the GDP deflator, the consumption deflator, the im-

port deflator, nominal wages, foreign demand, and foreign prices are all expressed as 100

times the first difference of their logarithm. All other variables are expressed in logarithms

except for the short-term nominal domestic and foreign interest rates. A number of further

transformations are made to ensure that variable measurement is consistent with the prop-

erties of the NAWM’s balanced-growth path and in line with the underlying assumption

that all relative prices are stationary; see Christoffel et al. (2008) for details.

4.1.2. A DSGE-VAR Model with the NAWM as Prior

VAR models have played a central role in the development of empirical macroeconomics

since the seminal article by Sims (1980). One reason for this success is that they high-

light the importance of a multivariate dynamic specification for macroeconomic analysis,

letting all observable variables be treated as endogenous. The VAR model of the NAWM
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observables yt can be written as:

yt = Φ0 +
p∑

j=1

Φjyt−j + εt, t = 1, . . . , T, (13)

where εt ∼ N(0,Σε) and with Σε being an n × n positive definite matrix. The vector Φ0

is n × 1, while Φj is n × n for j = 1, . . . , p. We assume that initial values of yt exists for

t = 0, . . . , 1 − p.

The parameters of a VAR model are given by (Φ0,Φ1, . . . ,Φp,Σε), provided that the

prior distribution of the VAR does not include additional unknown parameters. BVAR

models (see, e.g., Del Negro and Schorfheide, 2011, or Karlsson, 2013) typically include a

number of hyperparameters that are calibrated by the researcher and are therefore included

in the model index m rather than among θm.10 However, a well-known example of a VAR

model which includes additional parameters through the prior is a DSGE-VAR.

An early attempt to combine DSGE models with VARs is Ingram and Whiteman (1994),

where the VAR parameters are expressed as a function of the DSGE model parameters.

A prior for the DSGE model parameters then implies a prior for the VAR parameters

through a first-order Taylor expansion of the mapping. This idea was considerably en-

riched by Del Negro and Schorfheide (2004), where the prior distribution of the VAR

model parameters conditional on the DSGE model parameters is specified such that the

conditional moments of yt are determined through the implied first and second population

moments for a given value of the DSGE model parameters. A prior distribution for all

parameters is thereafter obtained by multiplying this conditional prior by the marginal

prior of the DSGE model parameters.

In addition, DSGE-VARs are indexed by the parameter λ, which determines the weight

on the prior relative to the data. The VAR approximation of the DSGE model resides

10 See Giannone, Lenza, and Primiceri (2012) for a novel approach to making inference about the infor-
mativeness of the prior distribution of BVARs.
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at one end of its range (λ = ∞), an unrestricted VAR at the other end (λ = 0), and in

between these two extremes a large number of models exist. Consequently, the DSGE-VAR

provides an approach for assessing the degree of misspecification, by relaxing the cross-

equation restrictions of the DSGE model, and where lower values of λ suggest a greater

degree of misspecification; see Del Negro, Schorfheide, Smets, and Wouters (2007).

In our application, the DSGE-VAR model is taken from Warne, Coenen, and Christoffel

(2013) and has the largest marginal likelihood among all pairs (λ, p) that they considered,

i.e. we let (λ, p) = (2.5, 2).11

4.1.3. BVAR and Random Walk Models

We also consider a Bayesian VAR model for the same observable variables yt as in the

NAWM. The usefulness of BVARs of the Minnesota-type for forecasting purposes has

long been recognized, as documented early on by Litterman (1986), and such models

are therefore natural benchmarks in forecast comparisons. Below, we employ the same

large BVAR as in CCW, estimated using the methodology in Bańbura, Giannone, and

Reichlin (2010). This approach relies on using dummy observations when implementing

the normal-inverted Wishart version of the Minnesota prior. Moreover, the prior mean of

the parameters on the first own lag of the endogenous variables (diagonal of Φ1) are either

unity, if the variable is measured in log-levels or levels, or zero if it is measured in log first

differences. That is, the prior mean supports random walks for all variables in log-levels or

11 The common unit-root technology trend in the NAWM implies a number of cointegration relations
among the levels of the observables, such as the consumption-output and investment-output “great ratios”.
In principle, it may be worthwhile to include these theoretically founded cointegration relations in the
VAR model, as in Del Negro et al. (2007), thus forming a vector error correction model (VECM) instead
of a VAR. However, the euro area data of the great ratios are trending and, thus, suggest that adding
the cointegration relations will result in a worse fit for a DSGE-VECM than for a DSGE-VAR. With
this in mind, we have opted to not include a DSGE-VECM in the forecast comparison exercise below.
The interested reader may also consider the forecasting exercise in Adolfson, Lindé, and Villani (2007b)
based on euro area data. In their study, the DSGE model which includes the cointegration relations as
observables and a Bayesian VECM based on the same cointegration relations lead to inferior forecasting
performance compared with models that exclude these long-run relations, although the deterioration is
more pronounced for the DSGE model; see also Adolfson, Laséen, Lindé, and Villani (2008).

– 14 –



levels. In CCW, this large BVAR is referred to as the model with a mixed prior. A more

detailed description of this BVAR is also found in the online appendix (Appendix B).

The last model we shall consider is a multivariate random walk for the vector yt with

the NAWM observables. We employ a standard diffuse prior for the covariance matrix of

the random walk innovations. That is, the vector yt − yt−1 = εt is i.i.d. N(0,Ω), where Ω

is an n × n positive definite matrix of unknown parameters, and p(Ω) ∝ |Ω|−(n+1)/2. One

advantage of this model is that it allows for an analytical determination of the predictive

density. For marginal h-step-ahead forecasts of ys,T+h the predictive density is given by a

nh-dimensional Student t-distribution with mean S′
hyo

T , covariance matrix

h

T − n − 1

T∑
t=1

S′
h

(
yo

t − yo
t−1

)(
yo

t − yo
t−1

)′
Sh,

and T − n + nh degrees of freedom; see the online appendix (Appendix A) for details.

4.2. Density Forecasts

A forecast comparison exercise is naturally cast as a decision problem within a Bayesian

setting and therefore needs to be based on a particular preference ordering. Scoring rules

can be used to compare the quality of probabilistic forecasts by giving a numerical value

using the predictive distribution and an event or value that materializes.

A widely used scoring rule that was suggested by, e.g., Good (1952) is the log predictive

score. Based on the predictive likelihood of Yo
s,T,h, it can be expressed as

Sh(m) =
T+Th−1∑

t=T

log p(Yo
s,t,h|Yo

t ,m), h = 1, . . . , h∗, (14)

where Th is the number of time periods the h-step-ahead predictive likelihood is evaluated.

The log predictive score is optimal in the sense that it uniquely determines the model

ranking among all local and proper scoring rules; see Gneiting and Raftery (2007) for a
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survey on scoring rules. However, there is no guarantee that it will pick the same model

as the forecast horizon or the selected subset of variables changes.

When comparing the density forecasts of the NAWM, the DSGE-VAR, the large BVAR,

and the multivariate random walk model below we will evaluate the log predictive score in

(14) with realizations for different subsets of the observables Yo
s,T,h = yo

s,T+h. Hence, the

predictive likelihood for each model and time period is marginalized with respect to the

forecast horizon and the variables included in a subset.

The first pseudo out-of-sample forecasts are computed for 1999Q1—the first quarter

after the introduction of the euro—while the final period is 2011Q4. The maximum forecast

horizon is eight quarters, yielding 52 quarters with one-step-ahead forecasts and 45 quarters

with eight-step-ahead forecasts. We shall only consider forecasts of quarterly growth rates

for the variables in first differences, while CCW also studied forecasts of annual growth

rates for such variables. The Kalman filter based calculations can be adjusted to handle

such transformations of the observables; see Warne (2015, Section 12.6.1).

Concerning the selection of variables in the subsets of the observables we follow CCW

and exclude the variables which are essentially exogenous in the NAWM. That is, we do

not compare density forecasts which include the five foreign variables (foreign demand,

foreign prices, foreign interest rate, competitors’ export prices, and oil prices) and govern-

ment consumption. For the remaining 12 variables we examine three nested subsets. The

smallest subset is called the small selection and given by real GDP growth, GDP deflator

inflation, and the short-term nominal interest rate. This selection may be regarded as the

minimum set of variables relevant to a meaningful analysis of monetary policy, and we shall

also study density forecasts of the individual variables in this selection. The second case

covers a medium selection with the seven variables studied in Smets and Wouters (2003).

In addition to the variables in the small selection, this selection covers private consump-

tion, total investment, employment, and nominal wages. Finally, the large selection has 12
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variables, given by the medium selection plus exports, imports, the import price deflator,

the private consumption deflator, and the real effective exchange rate.

4.2.1. Empirical Evidence using the MC Estimator

The log predictive scores based on the MC estimator of the marginal h-step-ahead pre-

dictive likelihood are shown in the upper part of Figure 2 for our entire forecast sample

from 1999Q1 to 2011Q4, the three variable selections defined above, eight forecast hori-

zons h = 1, . . . , 8, and our four models.12,13 For the NAWM and the DSGE-VAR model we

have used 10,000 posterior draws among the available 500,000 post burn-in draws for each

model and time period when calculating the log predictive likelihood. These draws have

been selected as draw number 1, 51, . . . , 499951 to combine modest computational costs

with a lower correlation between the draws and a sufficiently high estimation accuracy.

This procedure yields estimates of the log predictive likelihood that typically are accurate

up to and including the first decimal. We shall discuss the numerical standard errors in

Section 4.2.3.

Direct sampling is possible for the BVAR model through its normal-inverted Wishart

posterior and we have used 50,000 draws from its posterior distribution when computing

the predictive likelihood with the MC estimator. In the case of the random walk model, the

predictive likelihood for a selection of variables is multivariate Student t and can therefore

be computed from its analytical expression.

When comparing the NAWM with the DSGE-VAR, it is noteworthy that the latter

model generally obtains higher log scores for all horizons and variable selections. At the

longer horizons, the NAWM obtains values that are near those of the DSGE-VAR and, in

the case of the small selection, even slightly higher for the eight-quarter-ahead forecasts.

12 The log predictive scores estimated with the normal approximation are shown in the lower part of
Figure 2 and are discussed below in Section 4.2.2.
13 While the BVAR and the random walk are reestimated each quarter, the NAWM and the DSGE-VAR
are both reestimated on an annual basis over the forecast sample. Specifically, the latter two models are
reestimated once the end point of the historical sample is Q4 in a given calendar year.
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Hence, it seems that taking into account possible misspecification of the NAWM through

a DSGE-VAR improves forecasting performance, especially at the shorter horizons.

It is also worth pointing out that the random walk model is competitive with the NAWM

for the one-step-ahead forecasts, especially for the small selection. As the forecast horizon

increases, however, the random walk model’s performance worsens considerably.

Compared with the BVAR model, the NAWM is outperformed for the large and medium

selections and all forecast horizons, while in the case of the small selection the forecast

performance of the BVAR deteriorates relative to the NAWM (and the DSGE-VAR) as the

forecast horizon increases. In fact, in this case the BVAR performs worse than the NAWM

for the five- to eight-quarter-ahead density forecasts. At the same time, the BVAR is the

best performer over all horizons when using the large and the medium selection, with the

DSGE-VAR in second place. However, it performs worse than the DSGE-VAR for the

small selection and all forecast horizons beyond two quarters.

CCW identify two main factors that may explain the relative strengths and weaknesses

of the NAWM. On the one hand, its explicit microfoundations give rise to a parsimoniously

parameterized structure with a large number of cross-equation restrictions. This is poten-

tially an advantage for achieving forecast accuracy. On the other hand, the embedded

balanced growth path assumption means that the model’s ability to deal with differing

trends in the observables is limited compared to VAR models. In fact, this assumption

may induce a bias in the forecasts and CCW report that this bias is particularly important

in the case of variables connected with the labor share, which is trending downward over

the forecast sample. Specifically, the NAWM systematically overpredicts nominal wage

growth and underpredicts the private consumption deflator when the forecast sample ends

in 2006Q4. Since real wage growth is systematically overpredicted, real private consump-

tion growth is also overpredicted. These systematic forecast errors primarily affect the

NAWM’s performance for the large and medium selections, and these findings are also
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valid in our application where the forecast sample ends in 2011Q4. By relaxing the cross-

equation restrictions of the NAWM, the DSGE-VAR model is consequently able to achieve

better density forecasts than the NAWM for both of these selections.14

In Figure 3 the recursive average log predictive scores until 2011Q4 are displayed for

all models based on the large, medium and small selections and the one, two, four, and

the eight-quarter-ahead forecasts. For the large and medium selections we find that the

ranking of models over the various horizons is not greatly affected by the choice of the

sample end point. It is interesting to note that the average log predictive scores of the

NAWM and the DSGE-VAR are fairly constant. In view of the Great Recession in late

2008 and early 2009, the drop in forecast performance of these two models is quite small

for all the selections.

By constrast, the forecasting performance of the BVAR deteriorates substantially with

the onset of the Great Recession. This loss in performance is quite remarkable, especially

in the case of the small selection with the result that the model looses its first rank posi-

tion over the longer forecast horizons. In addition, there are several time periods during

2002–2003 where the performance of the BVAR drops for the longer horizons and for all

selections. At the onset of both these periods, the largest modulus of the BVAR at the

posterior mean increases from values around 0.98 to values above unity. In the first in-

stance, this sign of explosiveness also lasts until 2005, thus covering a period over which

the forecasting performance of the BVAR is actually improving.15

To gain more insight into possible explanations for the reversal in model ranking for

the small selection, we next turn to Figure 4. The focus of the graphs in this figure is a

simple decomposition of the log predictive score (likelihood) into a conditional score for

GDP deflator inflation and the short-term nominal interest rate given real GDP growth,

14 Plots of the mean forecast paths from all models and all variables in the large selection are available
from the authors on request.
15 A graph of the recursive posterior mean based largest modulus values of the BVAR is available from
the authors on request.
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and the marginal score for real GDP growth. It can be seen from these graphs that the

drop in forecasting performance for the BVAR in connection with the Great Recession is

mainly explained by a loss in real GDP growth forecasting performance.

To confirm this claim, we also display all the average marginal log predictive scores for

the three variables in the small selection in Figure 5. The graphs in this figure show that

the loss in forecasting performance of the BVAR at the onset of the Great Recession in

2008Q4 is most severe in the case of real GDP growth.16

For the other three models, the average forecast performance of the small selection is also

affected by the Great Recession, but here the impact is less striking than for the BVAR. In

the case of the NAWM and the DSGE-VAR, it is interesting to note that the performance

loss also seems mainly related to the real GDP growth forecasts. In view of the sharp fall in

euro area real GDP growth in 2008Q4 and 2009Q1 compared with the behavior of inflation

and short-term nominal interest rates, this finding is hardly surprising, but the fact that

the “more structural models” are less sensitive than the reduced form BVAR model to such

an event is indeed an interesting result.

This outcome may be explained by the fact that the BVAR prior of the constant term

(Φ0) is diffuse; see the online appendix (Appendix B). By contrast, the constant vector of

the NAWM (µ) is calibrated, while the DSGE-VAR has a proper prior for the constant

term. In the case of the BVAR, the posterior mean of the constant term for real GDP

growth fluctuates around 0.3 before the Great Recession, falls sharply to a minimum close

to zero in 2009Q2, and gradually recovers thereafter to about 0.25 at the end of the sample.

It is possible that a proper prior for the constant term may render its posterior mean to be

less sensitive to the recorded output loss in late 2008 and early 2009 and could therefore

result in better density forecasts of real GDP growth over this period. While it may be

16 Concerning the loss in performance for the BVAR around 2002-2003, this appears to be mainly related
to poor forecasts of GDP deflator inflation, although also for this variable density forecasts of the BVAR
drop at the onset of the Great Recession, albeit not by as much as in the case of real GDP growth.
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tempting to change the prior of the BVAR and thereby possibly reduce the sensitivity of

its estimated constant term to the Great Recession, it is also conceivable that the diffuse

prior has its advantages during the more tranquil periods of the forecast sample. In any

event, we prefer to restrict the specification of the BVAR model in our application to follow

the methodology of Bańbura, Giannone, and Reichlin (2010) for large BVARs.

4.2.2. Evidence Based on the Normal Approximation

It was suggested by Adolfson, Lindé, and Villani (2007b) to approximate the marginalized

predictive likelihood with a normal density with mean and covariance matrix taken from

the predictive density. While such an approximation is not necessary when we know how

to estimate the marginalized predictive likelihood, it can nevertheless serve as a tool for

enhancing our understanding of the results in Section 4.2.1. In view of the assumption

that the conditional likelihood is normal, the normal approximation is a natural reference

point as any deviation from normality is due to the impact of the posterior parameter

distribution on the predictive likelihood. Consequently, the size of the errors from using a

normal approximation relative to the MC estimator is a relevant matter when the latter is

accurate.17

The mean and covariance matrix of the predictive density in (2) can be estimated directly

from the posterior draws when the mean and covariance matrix of the predicted variables

conditional on the historical data and the parameters exist. Let these moments be denoted

by E[YT,h|Yo
T , θm,m] and C[YT,h|Yo

T , θm,m], respectively. The mean of the predictive

density is then given by

E
[YT,h

∣∣Yo
T ,m

]
= ET

[
E

[YT,h

∣∣Yo
T , θm,m

]]
, (15)

17 See Section 4.2.3 for some details on the numerical accuracy of the MC estimator.
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where ET denotes the expectation with respect to the posterior p(θm|Yo
T ,m). The covari-

ance matrix can likewise be expressed as

C
[YT,h

∣∣Yo
T ,m

]
= ET

[
C

[YT,h

∣∣Yo
T , θm,m

]]
+ CT

[
E

[YT,h

∣∣Yo
T , θm,m

]]
, (16)

and CT denotes the covariance with respect to the posterior. It should be stressed that

these estimates of the mean and the covariance of the predictive distribution do not rely

on the assumption that the latter distribution is normal.18

The normal approximation of the predictive likelihood for the observables Yo
s,T,h can be

computed from sample estimates of the moments in (15) and (16). This approximation

also provides a simple way of decomposing the predictive likelihood into a term reflecting

forecast errors and a term driven by forecast uncertainty. The mean and covariance matrix

of Ys,T,h are determined by selecting the proper elements of (15) and (16), respectively.

Next, notice that

log p̂N

(Yo
s,T,h

∣∣Yo
T ,m

)
= − n̄

2
log

(
2π

)
+ Ds,T,h(m) + Qs,T,h(m), (17)

where n̄ =
∑h

i=1 ni, whereas

Ds,T,h(m) = −
log

∣∣∣C[Ys,T,h

∣∣Yo
T ,m

]∣∣∣
2

, (18)

Qs,T,h(m) = −εo′
s,T,h(m)C

[Ys,T,h

∣∣Yo
T ,m

]−1
εo
s,T,h(m)

2
, (19)

and εo
s,T,h(m) is the vector of prediction errors for the realizations Yo

s,T,h. The forecast

uncertainty term is given by Ds,T,h(m) in (18), while Qs,T,h(m) in (19) gives the impact

18 It is also worth noting that, according to equation (16), the covariance matrix of the predictive density
is decomposed into two terms, where the first term on the right hand side reflects shock uncertainty over
the forecast horizon (as well as uncertainty about unobserved variables up to period T ) and the second
term parameter uncertainty; see Adolfson, Lindé, and Villani (2007b). Geweke and Amisano (2014) more
generally refer to the first term as the intrinsic variance of YT,h and the second term as the extrinsic
variance.
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of the quadratic standardized forecast errors on the normal approximation of the log pre-

dictive likelihood. This decomposition may be of particular interest when the difference

between the normal approximation and the MC estimator is small, and it may then reveal

whether forecast uncertainty (18) or forecast errors (19) is responsible for the ranking of

models.

The log predictive scores estimated with the normal approximation are displayed in the

lower part of Figure 2. It is noteworthy how similar these graphs look when compared with

the log predictive scores computed with the MC estimator in the upper part of the figure.

The numerical differences between the MC estimator in (11) and the normal approximation

in (17) for all models, forecast horizons, and selections of variables over the entire forecast

sample are documented in Table 1. The differences between the MC estimator and the

normal approximation of the log predictive score for the NAWM and the DSGE-VAR

are positive for all forecast horizons and variable selections. In this table we also report,

within parentheses, the differences between the two estimators when the quarters 2008Q4

and 2009Q1 are excluded from the calculations. As can be seen from the table these two

quarters are particularly detrimental for the overall approximation errors for the BVAR

model, but they also have a notable impact on approximation errors for the NAWM and

the DSGE-VAR. In view of our findings above regarding the onset of the Great Recession,

these results suggest that the accuracy of the normal approximation suffers when the value

of the predictive likelihood is very low. Furthermore, a large fraction of the differences are

positive suggesting that the normal approximation tends to be downwardly biased relative

to the MC estimator (and the analytically determined value for the random walk model).19

Since the normal approximation overall provides a good approximation of the MC esti-

mator of the predictive likelihood, it may be of interest to utilize equations (17)–(19) to

assess if the ranking of the models is driven by forecast uncertainty or by forecast errors.

19 The numerical values for the log predictive likelihood for all periods, models, and horizons are available
from the authors on request.
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To this end, the contribution of the forecast uncertainty term to the recursive estimates

of the average log predictive score are depicted in Figure 6. Analogously, the quadratic

standardized forecast error part of the recursive average log predictive scores are displayed

in Figure 7.

Starting with the forecast uncertainty term in Figure 6 it can be seen that for all depicted

models and forecast horizons it is weakly upward sloping over the forecast sample and that

the slope is roughly equal across the four models. This indicates that overall forecast

uncertainty is slowly decreasing as data points are added to the historical sample. In

general, the values for the BVAR model are roughly a few log-units higher in each period

than for the second group of models, given by the DSGE-VAR and the NAWM. Overall, the

ranking of models based on the forecast uncertainty term is constant across time periods,

variable selections, and forecast horizons, with the exception of the small selection for the

NAWM and the random walk model.

Turning to the quadratic standardized forecast error term in Figure 7, it can be seen that

the time variation of the recursively estimated average log predictive score is primarily due

to the forecast errors. This is not surprising since the covariance matrix of the predictive

distribution changes slowly and smoothly over time while the forecast errors are more

volatile. Second, the ranking of the models is to some extent reversed, particularly with the

BVAR having much larger quadratic standardized forecast errors than the other models.

The reversal in rankings for the forecast error term can also be understood from the

behavior of second moments, where a given squared forecast error yields a larger value

for this term when the uncertainty linked to the forecast is smaller. Nevertheless, when

compared with the forecast uncertainty term in Figure 6 the differences between the models

are generally smaller for the forecast error term. This suggests that the model ranking

based on the log predictive score is primarily determined by the second moments of the

predictive distribution in this application. However, in the case of the small selection, at
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the onset of the Great Recession the h-quarters-ahead forecast errors with h ≥ 4 of the

BVAR are so severe that the model looses out to the two DSGE-based models.

4.2.3. Numerical Precision of the MC Estimates

The precision of the MC estimator of the log predictive likelihood may be assessed with the

usual numerical standard error based on within posterior sample information.20 Posterior

sampling of the parameters of the NAWM and of the DSGE-VAR has been conducted with

the random walk Metropolis sampler (see, e.g., An and Schorfheide, 2007) and the draws

are therefore (highly) correlated, while the BVAR allows for direct sampling so that its

parameter draws are independent. Accordingly, the numerical standard errors of the point

estimates for the NAWM and the DSGE-VAR can be obtained with the Newey and West

(1987) estimator, while those of the BVAR exclude autocorrelation.21

We typically find that the standard errors of the log predictive likelihood are the largest

for the large selection of the observed variables and the smallest for the small selection.

The standard errors of the log predictive likelihood for the NAWM, DSGE-VAR, and

the BVAR before 2008Q4 are small and generally below 0.05 also for the eight-quarter-

ahead forecasts and the large selection. At the onset of the Great Recession when the

log predictive likelihood is small, these standard errors increase, especially for the BVAR

model. On average, the standard errors are the smallest for the NAWM and the largest for

the BVAR and they increase with the forecast horizon. For instance, the average standard

20 As suggested by one of the referees, an alternative is to compute the predictive likelihood estimates from
multiple posterior samples and estimate the numerical standard errors across these samples.
21 We have used the standard weights w(l, L) = 1 − l/(L + 1), l = 1, 2, . . . , L, for the autocovariances in
the expression of the Newey and West (1987) estimator, where L = 97 when N = 10000. Our results are
robust with respect to the choice of L with only minor fluctuations of the standard errors over the range
{50, 51, . . . , 500}. The standard error of the log predictive likelihood is computed with the delta method
and is therefore based on the standard error of the predictive likelihood. The estimated autocovariances in
the expression of the Newey and West estimator therefore rely on the conditional likelihood values of the N
posterior draws. In our case, the N draws are not consecutive but taken 50 steps apart. The autocorrelation
among the selected draws from the Markov chain is thereby considerably reduced compared with the case
of consecutive draws. We have chosen to use a subset of the posterior draws for the NAWM and the
DSGE-VAR since it significantly speeds up the calculations, without leading to substantial problems for
the numerical precision. Our estimates are also robust to very small values for the conditional likelihood.
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error of the eight-step-ahead forecasts of the NAWM is about 0.02 for the large selection,

0.03 for the DSGE-VAR, and 0.08 for the BVAR.

To further document our findings, Table 2 reports the point estimates of the log pre-

dictive likelihood and the numerical standard errors for the case when the historical data

ends in 2007Q4 and the forecasts are performed over the horizon 2008Q1–2009Q4. It is

striking that the largest standard errors are obtained at the onset of the Great Recession

in 2008Q4 and, in particular, in 2009Q1. The estimated log predictive likelihood values

are also the smallest for these quarters. For example, in the case of the large selection the

estimated value for the BVAR is approximately −61.2 in 2009Q1 with a standard error of

close to unity, which is also the largest recorded standard error over all selections, mod-

els, time periods, and forecast horizons. By contrast, the log predictive likelihood of the

NAWM is estimated at −40.0 for this quarter, with a standard error of about 0.1. These

two predictive likelihood values may be compared with the average log predictive score for

five-quarter-ahead forecasts which is −15.7 for the BVAR and −17.9 for the NAWM.

In summary, we find that the numerical precision of the MC estimator of the log pre-

dictive likelihood is satisfactory. For very small values of the log predictive likelihood, the

precision falls, especially for models with a large number of parameters, but it is unlikely

that it will impair the validity of the ranking of models since such small values are rare.

At the same time, the ranking is based on the log predictive score, i.e., the sum of the log

predictive likelihood, and we have not attempted to assess the numerical accuracy of this

measure. As a simple but rough rule of thumb for the large selection one may multiply the

average standard error (approximated to be at most 0.1) by the number of forecasts (about

50), suggesting that models with a log predictive score differing by less than 5 log-units

are approximately as good or as bad in this study. This strongly supports the view that

our model ranking results, as documented in e.g. Figure 2, are robust to estimation error.
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5. Summary and Conclusions

As pointed out by Geweke and Amisano (2010, p. 217), the predictive likelihood function

“. . . lies at the heart of Bayesian calculus for posterior model probabilities,

reflecting the logical positivism of the Bayesian approach: a model is as

good as its predictions.”

Accordingly, the predictive likelihood can be applied to rank models in a forecast compar-

ison exercise via the log predictive score.

This paper discusses how the predictive likelihood can be computed, by means of

marginalization, for any subset of the observable variables in linear Gaussian discrete-

time state-space models estimated with Bayesian methods. Moreover, it is shown that the

marginalized predictive likelihood can be computed recursively via a missing observations

consistent Kalman filter. Such an approach builds up the marginalized parts of only the rel-

evant arrays and is therefore—except when dealing with one-step-ahead forecasts—simpler

and faster than first calculating the mean and the covariance matrix of the joint predictive

likelihood conditional on the parameters (conditional likelihood), and thereafter reducing

these arrays to the entries of the set of variables to be predicted before evaluating the

marginalized conditional likelihood (as in, e.g., Andersson and Karlsson, 2008). Based on

a value of the conditional likelihood for each posterior draw of the model parameters, the

paper considers simple Monte Carlo (MC) integration over the posterior draws to estimate

the marginalized predictive likelihood.

In the empirical application with four linear Gaussian time series models, the MC esti-

mator of the predictive likelihood is compared with a normal approximation, constructed

from the mean vector and the covariance matrix of the predictive distribution. The ap-

plication is an extension of the CCW study for euro area data and compares the results

for the NAWM, a DSGE-VAR model with the NAWM as prior, a large BVAR, and a

multivariate random walk model. The DSGE-VAR model was not included in CCW and
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is used to relax the possibly misspecified cross-equation restrictions of the NAWM, while

the random walk model is an extension of the random walk model in CCW to a Bayesian

framework. In addition, the forecast sample is extended by five years to include the Great

Recession and ends in 2011Q4.

In terms of model ranking, the log predictive score (the sum of the log predictive likeli-

hood over the forecast sample 1999Q1–2011Q4) typically favors the BVAR model, with the

DSGE-VAR model improving somewhat on the density forecasts of the NAWM, especially

at the shorter horizons. The random walk model, on the other hand, is only competitive

with the NAWM at the one-step-ahead horizon, especially for the variable selection with

real GDP growth, GDP deflator inflation, and the short-term nominal interest rate only,

a subset of variables called the small selection above.

It is noteworthy that for the longer-term forecasts and the small selection, the BVAR

not only looses its first rank to the DSGE-VAR at the onset of the Great Recession in

2008Q4, but also the second rank to the NAWM. The main reason for this appears to be

the deterioration in the BVAR density forecasts of real GDP growth, compared with those

of the NAWM and the DSGE-VAR. In other words, the “more structural” models seem to

cope better with the substantial loss in output growth observed during the Great Recession

than the reduced form BVAR model.

Finally, we find that the assumption of a normal predictive density provides a good

approximation of the predictive likelihood when examining the density forecasts for the

four models. One useful aspect of the normal approximation is that it can be employed to

decompose the average log predictive score into a term that represents forecast uncertainty

and another term that represents the quadratic standardized forecast errors. Using this

decomposition, we show that the model ranking in our forecast comparison exercise is

generally determined by forecast uncertainty. However, in the case of the change in model
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ranking for the small selection at the onset of the Great Recession, the decomposition

reveals that this change is driven by the forecast error term.

While we have shown that the MC estimator is numerically reliable in our application,

alternative estimators may be preferable in other density forecasting situations. For exam-

ple, one may consider harmonic mean estimators of the marginalized predictive likelihood,

cross entropy, or bridge sampling methods. Evaluating these options is beyond the scope

of this paper, but it ought to be addressed in future research.

Although we have only considered linear Gaussian models that can be written in state-

space form, this already covers a large number of the models frequently used in applied

macroeconomics. The basic idea that has been presented for computing the conditional

likelihood through a missing observations consistent Kalman filter can, in principle, be ex-

tended to nonlinear and nonnormal models. For such models, the marginalized conditional

likelihood may be estimated with a suitable missing observations consistent particle filter

(sequential Monte Carlo); see, e.g., Giordani, Pitt, and Kohn (2011) for a survey on filter-

ing in state-space models, or Durbin and Koopman (2012, Chapter 12) for an introduction

to particle filtering. Whether or not this leads to a reliable approach for computing the

marginalized conditional likelihood in such models, however, is an open and important

question for future research.
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Figure 1. The euro area data for the sample 1985Q1–2011Q4.
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Note: This figure shows the time series of the observable variables used in the estimation of the NAWM. Details
on the variable transformations are provided in Christoffel, Coenen, and Warne (2008, Section 3.2) or Section 2.3
in CCW. Price and wage inflation as well as the interest rates are reported in annualized percentage terms.
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Figure 2. Log predictive scores using the MC estimator of the predictive
likelihood for the entire sample 1999Q1–2011Q4.
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Note: The log predictive likelihood of the random walk model is calculated with its analytical expression.
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Figure 3. Recursive estimates of the average log predictive score using
the MC estimator.
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Figure 4. Recursive estimates of a decomposition of the average log pre-
dictive score for the small selection.
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Figure 5. Recursive estimates of the average log predictive score for real
GDP growth, GDP deflator inflation, and the short-term nom-
inal interest rate using the MC estimator.
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Figure 6. Recursive estimates of the forecast uncertainty term of the av-
erage log predictive score.
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mation of the log predictive likelihood; see equation (18). See also Table 3.
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Figure 7. Recursive estimates of the quadratic standardized forecast error
term of the average log predictive score.
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