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Abstract. Common trends models provide a useful tool for studying growth and busi-
ness cycle phenomena in a joint framework (see King, Plosser, Stock and Watson (1991)).
In this paper we study the problem of how to estimate and analyse a common stochastic
trends model for an n dimensional time series which is cointegrated of order (1,1) with
r < n cointegration vectors. Identification of k = n− r permanent (trend) and r transi-
tory innovations is discussed in terms of impulse responses and variance decompositions.
Finally, we derive analytical expressions of the asymptotic distributions for estimates of
these functions, thereby making formal hypothesis testing and inference possible within
this framework.
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1. Introduction

In many models on macroeconomic fluctuations the dichotomy between growth and

cycles has played an important role. Traditionally, growth has often been treated as

independent of factors that result in cyclical fluctuations (see King, Plosser and Re-

belo (1988a)). In contrast, stochastic growth models (see e.g. King, Plosser and Rebelo

(1988b), and King, Plosser, Stock and Watson (1987)) allow growth shocks to influence

the short run fluctuations. A common feature of these models is that the number of

growth disturbances is rather low relative to the number of variables.

The prevailing view in the theoretical literature seems to be that macroeconomic fluc-

tuations arise from shocks to fundamental variables such as economic policy, preferences,

and technology. These shocks are then propagated through the economy and result in

systematic patterns of persistence and comovements among macroeconomic aggregates.

Consequently, it should be of interest to analyse a simple time series model which makes
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it possible to examine connections between growth related shocks and transient fluctua-

tions. Such a model will then by necessity incorporate stochastic rather than determinis-

tic trends. Furthermore, to consider the notion of a few important growth disturbances,

there will in general be fewer stochastic trends than time series.

In papers by King, Plosser, Stock, and Watson (1987,1991) and Stock and Watson

(1988) the connection between cointegration and common stochastic trends was first ex-

amined in some detail. The basic idea is that there is a reduced number of linear stochastic

trends feeding the system. This implies that there exists certain linear combinations of

the levels series which ensure that the trends average out, i.e. the residuals from the

linear combinations are wide sense stationary stochastic processes. King, Plosser, Stock,

and Watson (1987) investigate a common trends model for five U.S. macroeconomic time

series (output, consumption, investments, the price level, and the money stock) and

model growth by two stochastic trends, a nominal and a real trend. With five time se-

ries and two independent stochastic trends, common sense (or algebra) suggests that we

can construct three independent vectors which eliminate the trends, i.e. there are three

cointegrating vectors which describe a steady state in such a system. A shortcoming

of their paper is that the description of the estimation and computation strategy they

make use of is somewhat limited. For example, an inversion algorithm needed to obtain

estimates of, e.g. impulse response functions and forecast error variance decompositions

is only mentioned. More importantly, asymptotic properties of these functions are not

considered.

A purpose of this paper is to mathematically establish how one may estimate the

parameters in a common stochastic trends model when the time series of interest are

cointegrated of order (1,1) (see Blanchard and Quah (1989), Park (1990), and Shapiro

and Watson (1988) for approaches which are related to the one I shall examine here;

or Gonzalo and Granger (1992) for a factor model approach to common trends). Fur-

thermore, I shall show how one may perform dynamic analysis within this framework

when the innovations to the system are either permanent or transitory, i.e. when the re-

sponses in at least one variable to an innovation are or are not persistent. In particular,

the calculation of impulse response functions and forecast error variance decompositions

will be looked into in some detail. Finally, I shall derive asymptotic distributions of

estimates of these functions in the present setting. Here, the theory is based on Baillie
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(1981,1987), Lütkepohl (1988,1989,1990), Lütkepohl and Poskitt (1990), Lütkepohl and

Reimers (1992), and Schmidt (1973,1974), although the particular innovations I examine

complicate the analysis somewhat.

The paper is organized as follows. In section 2, I discuss some representations which

are equivalent for cointegrated time series. There it is shown that a restricted vector

autoregressive representation for cointegrated time series exists under familiar circum-

stances. Since this representation is invertible, it is well suited for calculating all other

parameters of interest (see also Warne (1990)). Section 3 is concerned with the Wold

moving average parameters and with identification of permanent and transitory innova-

tions. In section 4, I analyse the asymptotic properties of impulse response functions

and forecast error variance decompositions under the assumption that the lag order has

a known upper bound. Section 5 summarizes the main results. Mathematical proofs of

the theorems are provided in the Appendix.

2. Common Trends and Cointegration

Linear time series models are generally specified in terms of variables which can be

observed and a purely nondeterministic and serially uncorrelated error. Accordingly,

they can be estimated with standard tools. In contrast, a common trends model consists

of a vector of trends and a vector of stationary variables, where neither component can

be observed as an individual factor. Without loss of generality, let {xt} be a vector time

series such that

xt = x
p
t + x

s
t.(1)

Here, xp
t represents a vector of trends of xt, while x

s
t is a stationary residual.

King, Plosser, Stock and Watson (KPSW) (1987) and Stock and Watson (1988) show

that there is a simple duality between the concepts of cointegration and common trends.

In particular, the cointegrating restrictions determine the number of independent trends

and how a vector of observed variables is related to all the independent trends. That

is, if α is a cointegrating vector, then α′xp
t = 0 for α′xt = α

′xs
t to be stationary. These

restrictions, however, neither specify nor suggest whether a certain trend is related to,

e.g. technology shocks or economic policy. To be able to make such interpretations it is

necessary to consider further identifying assumptions. In this section I shall devote the

first part to the mathematical structure of cointegrated time series and the second part
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to estimation and identification of the common trends parameters. As an illustration,

the third part contains an example of a three dimensional system for output, the price

level, and the money stock with one cointegration vector and two common trends.

2.1. The Model. Let {xt} denote an n dimensional real valued vector (discrete) time

series which is driven by k ≤ n common stochastic trends. Specifically,

xt = x0 +Υτt + Φ(L)νt.(2)

Here, L is the lag operator, i.e. Ljxt = xt−j for any integer j. The n dimensional vector

sequence {νt} is assumed to be white noise with E[νt] = 0 and E[νtν
′
t] = In, the n × n

identity matrix. Furthermore, the n × n matrix polynomial Φ(λ) =
∑∞

j=0 Φjλ
j is finite

for all λ on and inside the unit circle and, without loss of generality, we assume that x0

is stationary. In other words, the component Φ(L)νt is jointly (wide sense) stationary.

The trend or growth component of xt is described by Υτt. The loading matrix Υ is of

dimension n× k with rank k whereas

τt = µ+ τt−1 + ϕt.(3)

Hence, τt is a k dimensional vector of random walks with drift µ and innovation ϕt. Let

us assume that the trend disturbance sequence {ϕt} is white noise with E[ϕt] = 0 and

E[ϕtϕ
′
t] = Ik.

In relation to the decomposition in (1) we find that the common trends model in (2)

and (3) specifies that

xs
t = x0 + Φ(L)νt,

xp
t = Υ

[
τ0 + µt+

∑t
j=1 ϕj

]
.

(4)

Furthermore, whenever the number of common trends, k, is less than the number of

variables, n, there are exactly r = n−k linearly independent vectors which are orthogonal

to the columns of the loading matrix Υ. In other words, there exists and n × r matrix

α such that α′Υ = 0. Accordingly, α′xp
t = 0 for all t so that zt := α′xt (:= denotes a

definition) is jointly stationary.

The common trends model in (2) and (3), originally due to Stock and Watson (1988),

has some appealing properties. First, the trends include a stochastic element which is

consistent with the notion that some shocks to an economy are persistent. Second, there
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may be fewer trends than variables so that the model allows for steady state relationships

between the variables. In this framework, these steady states are described by the matrix

α. Furthermore, if ϕt and νt are correlated it is possible for the trend disturbances to

influence not only growth but also fluctuations about the trends. In fact, the approach

we shall take in this paper implies that the first k elements of νt are given by ϕt.

To determine how we can estimate the common trends model let us assume that {xt}
is generated by the unrestricted vector autoregression (VAR) of order p:

A(L)xt = ρ+ εt.(5)

The n dimensional sequence of (reduced form) disturbances {εt} is white noise with

E[εt] = 0 and E[εtε
′
t] = Σ, a positive definite matrix. The n × n matrix polynomial

A(λ) = In −∑p
j=1Ajλ

j satisfies det[A(λ)] = 0 if and only if |λ| > 1 or λ = 1 so that

explosive {xt} processes are ruled out. Moreover, the only form of nonstationarity which

is possible is due to unit roots. In other words, if {xt} is generated by (5), then the

process is integrated of order d, where d is a nonnegative integer (for a definition of

integration, see Johansen (1991)).

If {xt} in (5) is cointegrated of order (1,1) with r cointegration vectors we know from

Granger’s Representation Theorem (GRT) that (i) rank[A(1)] = r, and (ii) A(1) = γα′

(see Engle and Granger (1987), Hylleberg and Mizon (1989), and Johansen (1988a,1989,

1991)). The matrices γ and α are of dimension n× r and the columns of α are called the

cointegration vectors. Under the assumption of cointegration it follows by GRT that an

alternative form of (5) is

A∗(L)∆xt = ρ− γzt−1 + εt,(6)

where ∆ := 1 − L is the first difference operator and the matrix polynomial A∗(λ) =

In −∑p−1
i=1 A

∗
iλ

i is related to A(λ) through A∗
i = −∑p

j=i+1Aj for i = 1, . . . , p− 1.

The representation in (6) is widely known as the vector error correction (VEC) model

(see e.g. Hylleberg and Mizon (1989)). Cointegration implies that the r dimensional

process {zt} is jointly stationary. If we regard the cointegration vectors as describing a

steady state or a long run equilibrium for x the term γzt−1 represents the correction of

the change in xt due to last periods long run equilibrium error. Note that the major
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difference between equations (5) and (6) is that the latter representation is conditioned

on cointegration while the former is merely consistent with unit roots.

Engle and Granger’s (1987) version of GRT is based on the existence of a Wold vector

moving average (VMA) representation of the form

∆xt = δ + C(L)εt.(7)

The matrix polynomial C(λ) = In +
∑∞

j=1Cjλ
j is assumed to be 1–summable in the

sense of Brillinger (1981), i.e.
∑∞

j=1 j|Cj| is finite. In other words, the time series {∆xt}
is jointly stationary. In addition, if C(1) �= 0 it follows that {xt} is nonstationary.

Specifically, Engle and Granger find that if {xt} is cointegrated of order (1,1), then C(1)

has rank n − r and α′C(1) = 0. That is, a VMA representation of the form in (7)

and cointegration jointly imply the existence of the unrestricted VAR and of the VEC

representations in (5) and (6), respectively (with p, the lag order, possibly infinite).

Johansen (1991), on the other hand, shows that if {xt} is generated by (5), A(1) = γα′,

and the (n− r)× (n− r) matrix

γ′⊥

(
p∑

j=1

jAj

)
α⊥

is nonsingular, then {xt} is cointegrated of order (1,1) with r cointegration vectors such

that there exists a Wold representation of the form in (7). The nonsingularity requirement

for the above matrix rules out the possibility that {xt} is integrated of an order greater

than 1.

From mathematical and statistical perspectives, Johansen’s approach to the GRT is the

more natural. The VAR in (5) is a system of stochastic linear difference equations whose

solution is given by (7) and where {xt} is cointegrated under the parametric conditions

stated by Johansen. In contrast, Engle and Granger assume cointegration and show that

there exists a VEC representation.

Using these results it is now possible to rewrite equation (7) as a common trends model.

In particular, let

C(λ) = C(1) + (1− λ)C∗(λ),(8)
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where C∗(λ) =
∑∞

i=0C
∗
i λ

i is absolutely summable and C∗
i = −∑∞

j=i+1Cj for i ≥ 0 as

shown by Stock (1987). Substituting equation (8) into (7) for C(λ), recursively substi-

tuting for xt−1, . . . , x1, and letting εs = 0 for s = 0, we obtain

xt = x0 + C(1)ξt + C
∗(L)εt.(9)

For this (reduced form common) stochastic trends representation we have that ξt =

ρ+ ξt−1 + εt and δ = C(1)ρ. In terms of equation (1) this means that

xs
t = x0 + C

∗(L)εt,

xp
t = C(1)

[
ξ0 + ρt+

∑t
j=1 εj

]
.

(10)

Stock and Watson (1988) derive the common trends model in (2) from (9). Leaving

the algebra aside for now, the basic idea is simply to use the fact that C(1) has a reduced

rank under the assumption of cointegration. Accordingly, only k = n − r elements of

C(1)εt result in (linearly) independent permanent effects on xt. In fact, from (4) and

(10) we find that the equality of the trend components imply that

Υϕt = C(1)εt, ΥΥ′ = C(1)ΣC(1)′, and Υµ = C(1)ρ.(11)

When one is concerned with estimating the loading matrix, Υ, of the common trends

model in (2), it is clear that we need to have information about the parameters of C(1)

and Σ. While Σ can be estimated directly from (5) or (6), to obtain an estimate of C(1)

we must know how to invert the VEC representation.

Campbell and Shiller (1988) show that it is straightforward to rewrite the VEC repre-

sentation as a restricted VAR system when n = 2 and r = 1. To generalize their result,

let M be an n × n nonsingular matrix given by [S ′
k α]′, where the rows of the k × n

selection matrix Sk satisfy Si,kC(1) �= 0 for all i ∈ {1, . . . , k}. Also, let γ∗ be an n × n
matrix equal to [0 γ], while the n× n matrix polynomials D(λ) and D⊥(λ) are

D(λ) :=


 Ik 0

0 (1− λ)Ir


 , D⊥(λ) :=


 (1− λ)Ik 0

0 Ir


 ,

Next, let θ :=Mρ and ηt :=Mεt. We can now derive a VAR representation for xt which

is conditioned on the cointegration vectors. We shall call this representation a restricted

VAR.
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Premultiplying both sides of equation (6) by M we get

MA∗(L)∆xt = θ −Mγzt−1 + ηt.

Define the n dimensional random variable yt from yt := D⊥(L)Mxt. Noting that (1 −
λ)In = D(λ)D⊥(λ) and γzt = γ∗yt, we can express this system as

B(L)yt = θ + ηt,(12)

where

B(λ) :=M
[
A∗(λ)M−1D(λ) + γ∗λ

]
.

Note that B(0) = In and that the matrix polynomial B(λ) is (at most) of order p. The

following version of GRT turns out to be very useful in the coming analysis of common

trends:

Theorem 1. (Granger’s Representation Theorem) Suppose {xt} is generated according

to (5) with rank[A(1)] = r < n and det[B(λ)] = 0 if and only if |λ| > 1, then {yt}, {zt},
and {∆xt} are integrated of order zero. In addition,

A(λ) =M−1B(λ)D⊥(λ)M,(13)

and

C(λ) =M−1D(λ)B(λ)−1M.(14)

Note that the rank condition ensures that {xt} is not integrated of order zero. The

determinant condition, on the other hand, means that yt in (12) has an invertible Wold

moving average representation and, accordingly, {yt} (and thus {zt}) is integrated of

order zero. The rank condition then implies that {xt} is integrated of order one. Premul-

tiplication byM−1 in (12) and using the definitions of yt, θ and ηt gives us the expression

in (13). Similarly, C(λ) is obtained by premultiplying

yt = B(1)
−1θ +B(L)−1ηt,

byM−1D(λ) and using the same definitions and the property that (1−λ)In = D(λ)D⊥(λ).

In a sense, Theorem 1 summarizes all we need to know about the (reduced form)

mathematical properties of a vector time series which is cointegrated of order (1,1) with



A COMMON TRENDS MODEL 9

cointegrating rank r. The matrix polynomial B(λ) captures the general ‘short run’ dy-

namics, whereas (D⊥(λ), D(λ)) and M represent integration and cointegration, respec-

tively. Furthermore, the restricted VAR may be used as a convenient data generating

process for testing linear rational expectations models when the time series of interest

are cointegrated (cf. Baillie (1989), Campbell and Shiller (1987), and Warne (1990)).

However, for my purpose here, a more important result is that we have found a simple

mathematical connection to the Wold VMA representation.1 Hence, the restricted VAR

in (12) is very well suited for estimating a common trends model.2

2.2. Estimation of the Common Trends Parameters. From Theorem 1 it follows

that the lag order of the restricted VAR in (12) is never greater than that of the unre-

stricted VAR in (5). In fact, unless all elements in the final r columns of the matrix Ap are

zero the restricted VAR is also of order p. Hence, let us consider B(λ) = In−
∑p

k=1Bkλ
k.

Furthermore, the Theorem establishes that the matrix C(1) is equal toM−1D(1)F (1)M ,

where F (1) is the inverse of B(1). It then follows that if M , Ω :=MΣM ′(= E[ηtη
′
t]) and

B(1) were known, so would Σ and C(1) be.

The space spanned by the rows of α′ may be estimated and analysed by applying the

maximum likelihood based methods developed in Johansen (1988b,1989,1991) and Jo-

hansen and Juselius (1990). Another possibility is to let these parameters be determined

by the steady state of an appropriate economic theory (cf. KPSW (1987) and Mellander,

Vredin and Warne (1992)). In both cases, knowledge of these parameters suffices for

the purpose of determining the matrices M and D⊥(λ), needed to construct the vector

time series {yt}. Furthermore, consistent and asymptotically efficient estimates of the

parameters in (12) may be obtained from e.g. Gaussian maximum likelihood estimation

of yt on a constant and p lags.3

1KPSW make use of the VEC representation in their study. Based on the results in Theorem 1 it can
be shown that C(λ) = M−1D(λ)[A∗(λ)M−1D(λ)+γ∗λ]−1; see also Johansen (1991) and Lütkepohl and
Reimers (1992).
2It may be noted that from a purely mathematical point of view it is always possible to consider a
selection matrix Sk of the form Sk = [Ik 0] when the cointegrating vectors are known. The reason for
this is that rank[α] = r so that the components of xt can be ordered to ensure that the last r columns
of α′ is an invertible matrix. In fact, we can let α′ = [α′

k Ir], where α′
k is an r × k matrix. It is now

easily established that α′C(1) = 0.
3Note that the asymptotic properties of, e.g. C(1) are independent of how α has been determined. A
consistently estimated and a known α matrix will always be associated with identical asymptotic covari-
ance matrices for the estimate of C(1) as long as the corresponding M matrix converges in probability to
a nonsingular (and true) matrix at the rate

√
T (where T is the sample size). For example, Johansen’s

ML estimator of the cointegration vectors converges in probability at all rates less than T . Moreover,
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The next step is to calculate the matrix of common trends parameters. To identify

these parameters one may proceed along the route suggested by KPSW (see also the

proof of Theorem 4.1 in Johansen (1991) for an alternative approach). That is, when

{xt} has k common stochastic trends, we may write the matrix Υ as

Υ = Υ0π,(15)

where Υ0 is an n × k matrix with known parameters, chosen so that α′Υ0 = 0 and so

that the innovations to the trends have an economic interpretation (we shall return to

this issue below). The “free” parameters of Υ are lumped into the k × k matrix π. One

problem is thus how we can determine π.

Using the relationship ΥΥ′ = C(1)ΣC(1)′ and equation (15) we have that

ππ′ = (Υ′
0Υ0)

−1
Υ′

0C(1)ΣC(1)
′Υ0(Υ

′
0Υ0)

−1
.(16)

The right hand side of equation (16) is a k×k positive definite and symmetric matrix with

k(k+1)/2 unique parameters. We cannot, however, solve for π uniquely without making

some additional assumptions. For the above system of equations exactly k(k + 1)/2

parameters can be uniquely determined, e.g. from a Choleski decomposition. Other

procedures, such as a method of moments decomposition, may also be considered (cf.

Bernanke (1986)).

It should be noted that although the Choleski decomposition of π indicates a recursive

structure for the influence of τt on xt, the choice of Υ0 actually determines how the trends

affect xt. Thus, Υ need not represent any recursiveness for the common trends model.

To summarize this discussion, to identify the nk parameters of Υ we first use the rk

restrictions α′Υ = 0. Hence, there remains to determine k2 parameters. Second, we

can solve the k(k + 1)/2 independent equations in ππ′ if Υ0 is known. Accordingly, in

addition to the requirement α′Υ0 = 0, k(k − 1)/2 further restrictions must be imposed

on Υ to achieve exact identification. These additional constraints should be motivated

by economic theory since they cannot be tested.

the matrix Sk must be appropriately chosen. A suitable choice is to let Sk = α′
⊥, where α′α⊥ = 0 and

α′
⊥α⊥ = Ik. This choice of a selection matrix guarantees that the estimate of M converges to a non-

singular matrix in probability (under suitable regularity conditions for the process {εt}). Note that the
Johansen ML estimation procedure “automatically” provides an estimate of α⊥, i.e. those eigenvectors
which are associated with the smallest (n − r) eigenvalues in the cointegration rank testing scheme.
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At this stage, it should be emphasized that this procedure for identifying the common

trends parameters implies that the innovations to the common trends influence transient

fluctuations in xt as well as the growth path. To see this, note that ϕt = (Υ′Υ)−1Υ′C(1)εt.

Consequently, the covariance matrix between ϕt and εt is

E[ϕtε
′
t] = (Υ′Υ)−1Υ′C(1)Σ.

Obviously, this matrix is nonzero since the columns of Υ cannot be orthogonal to the

columns of C(1). It is precisely this fact which allows us to study connections between

growth and transitory fluctuations.

2.3. An Example. Suppose we are interested in examining the interactions between

the logarithms of real output (lnYt), the price level (lnPt), and the money stock (lnMt).

Furthermore, suppose we model xt = [lnYt lnPt lnMt]
′ as being cointegrated of order

(1,1) with one cointegrating vector. Let α′ = [1 1 − 1], so that the logarithm of the

velocity of money is integrated of order zero. Accordingly, each series is nonstationary in

levels.4

In this case, we can estimate the restricted VAR in equation (12) with yt given by

yt = [∆ lnYt ∆ lnPt lnVt]
′, where lnVt = (lnYt + lnPt − lnMt). From estimates of the

Bk matrices and of Ω we can then determine estimates of C(1) and Σ. Furthermore,

to estimate the 3 × 2 matrix of common trends parameters, Υ, we need to specify Υ0.

A choice, suggested by economic theory, is to let τt include a real (technology) and a

nominal (monetary policy) trend, and assume that the nominal trend does not influence

the long run growth path of lnYt. Naturally, with k = 2 this is one conceivable additional

restriction which Υ must satisfy.

4Note, however, it is not necessary that each time series in a common trends model is nonstationary.
For example, the time series model studied by Blanchard and Quah (1989) can easily be fitted into a
common trends framework. Since they examine real output and unemployment and model the former
as first difference stationary and the latter as stationary, there is one cointegrating vector which assigns
a nonzero coefficient to unemployment and a zero coefficient to real output. Then, the time series yt is
given by the first difference of real output and the level of unemployment. Furthermore, the matrix Υ
is 2 × 1 with a nonzero coefficient in the output equation and a zero coefficient in the unemployment
equation.
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Given α and a lower triangular π matrix, the above discussion implies that

Υ0 =




Υ0,11 0

Υ0,21 Υ0,22

Υ0,11 +Υ0,21 Υ0,22


 .

It can be verified that the choice of Υ0,21 does not influence the matrix Υ, whereas Υ0,11

and Υ0,22 must be nonzero. Therefore, let Υ0,21 = 0 and Υ0,11 = Υ0,22 = 1.5 With π

being lower triangular, the general form of Υ is then

Υ =




π11 0

π21 π22

π11 + π21 π22


 ,

where πij denotes the (i, j):th element of π. From Υ it can be seen that the first element

of τt is the real trend, while the second element is the nominal trend. Furthermore, the

matrix Υ satisfies three restrictions and thus has three free parameters. That is, Υ12 = 0

is a restriction suggested by economic theory while Υ11 +Υ21 = Υ31, and Υ22 = Υ32 are

implied by the two restrictions from cointegration. The common trends parameters are

then exactly identified.

3. Inversion and Identification

3.1. The VMA Parameters. The VMA representation in equation (7) is a natural

starting point for analysing some dynamic properties of a vector time series {xt} with k

common trends. The central issues for performing impulse response analysis and fore-

cast error variance decompositions are those of (a) calculating the sequence of matrices

{Cj}∞j=1, (b) identifying the innovations to the system, and (c) computing standard er-

rors for the estimated impulse responses and variance decompositions. Here, I shall focus

on (a), whereas (b) and (c) are studied in sections 3.2 and 4, respectively. It can be

5To verify this claim, let φ be a k×k matrix such that Υ = Υ0φ
−1φπ = Υ̃0π̃. Since π is lower triangular

it follows that φ must also be lower triangular for π̃ := φπ to be lower triangular. Standard matrix theory
tells us that the inverse of a lower triangular matrix is lower triangular. Thus, the matrix Υ̃0 := Υ0φ

−1

can be constructed in any way we desire as long as α′Υ0 = 0 and φ is lower triangular. In the example, we
may consider a lower triangular φ matrix whose diagonal elements are given by φii = Υ0,ii for i ∈ {1, 2},
thus the nonzero requirement. Also, φ21 = Υ0,21 is permissible. If π is not lower triangular it becomes
more difficult to determine what kind of φ matrices that may be considered.
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noted that we will abstract from non–Wold moving average representations (see Lippi

and Reichlin (1990)).

From Theorem 1 we find that the C(λ) polynomial is equal to M−1D(λ)F (λ)M , and

F (λ) is the inverse of B(λ). Letting F (λ) = In +
∑∞

j=1 Fjλ
j , and using the above

relationship, we find that

C(λ) = In +
∞∑

j=1

M−1(Fj −DFj−1)Mλ
j ,(17)

where F0 = In and the n × n matrix D is defined from D(λ) = In − D · λ. It may be

noted that D = D⊥(1) is idempotent, a property we shall use below.

One algorithm for performing the inversion is obtained by stacking equation (12) into

a first order system of the form


yt

yt−1

...

yt−p+1



=




θ

0
...

0



+




B1 B2 · · · Bp−1 Bp

In 0 · · · 0 0
...

. . .
...

...

0 0 In 0



·




yt−1

yt−2

...

yt−p



+




ηt

0
...

0



,

or

Yt = Θ+BYt−1 +Nt.(18)

Since det[B(λ)] = 0 has all solutions outside the unit circle, it follows that the eigenvalues

of B are inside the unit circle. Accordingly, lims→∞Bs = 0 so that the solution to the

system of stochastic difference equations in (18) is

Yt =

∞∑
j=0

BjΘ+

∞∑
j=0

BjNt−j .(19)

Defining the n × np matrix Jp as [In 0 · · ·0], we find that yt = JpYt, Θ = J ′
pθ, and

Nt = J
′
pηt. Hence, the solution to equation (12) in terms of current and past realizations

of ηt can be written as

yt =
∞∑

j=0

JpB
jJ ′

pθ +
∞∑

j=0

JpB
jJ ′

pηt−j ,(20)

where F (1) =
∑∞

j=0 JpB
jJ ′

p. Finally, by equation (17) we get

Cj =M
−1JpB

jJ ′
pM −M−1DJpB

j−1J ′
pM, j = 1, 2, . . .(21)
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where C0 = In. Given estimates of the Bk matrices and of M , it is thus straightforward

to estimate the Wold VMA parameters in Cj.

3.2. Identification of Permanent and Transitory Innovations. In section 2.2 we

identified the long run coefficients on the k common trends innovations. My objective

is now to be more specific about identification of all parameters in the common trends

model. In particular, it is important to be precise about identification in the sense that

implications from impulse response functions and forecast error variance decompositions

are fully consistent with the common trends model. Before we come to that, however,

two definitions and some new notation is introduced to minimize ambiguities.

Let Γ be any n × n nonsingular matrix such that ΓΣΓ′ is diagonal. The matrix

R(1) = C(1)Γ−1 is called the total impact matrix. Also, let νit be the i:th component of

the vector Γεt.

Definition 1. An n × n matrix Γ is said to identify a common trends model if (i) it is

uniquely determined from the parameters of the model in equation (6), (ii) the covariance

matrix of Γεt is diagonal with nonzero diagonal elements, and (iii) the total impact matrix

is given by R(1) = [Υ 0].

Definition 2. An innovation νit is said to be permanent (transitory) if the i:th column

of the total impact matrix is nonzero (zero).

From these two definitions it follows that if an n × n matrix Γ identifies a common

trends model, then the permanent innovations are those which are associated with the

common trends.

Let the n × n nonsingular matrix Γ be chosen so that (i) the permanent innovations

are equal to ϕt, (ii) the permanent and the transitory innovations, ψt, are independent,

and (iii) the transitory innovations are mutually independent. We then have that

∆xt = δ + C(L)εt = δ +R(L)νt,(22)

where R(λ) = C(λ)Γ−1, νt = Γεt, and E[νtν
′
t] = In. The component R(L)νt in equation

(22) is called the impulse response function of ∆xt.
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In order to derive a suitable matrix Γ, it may first be noted that

νt =


 ϕt

ψt


 =


 Γk

Γr


 εt = Γεt,(23)

where Γk and Γr are k×n and r×n matrices, respectively. It has already been established

that Υϕt = C(1)εt and that Υ as well as C(1) had rank equal to k. Hence, it follows

that the permanent innovations may be described by

ϕt = (Υ′Υ)−1Υ′C(1)εt,(24)

and, accordingly, the top k × n matrix Γk in (23) is (Υ′Υ)−1Υ′C(1).

To find a matrix Γr which satisfies the conditions (ii) ϕt and ψt are independent, and

(iii) the components of ψt are mutually independent, we may either make use of a Jordan

decomposition of some suitable matrix or mathematically related schemes (cf. Stock and

Watson (1988)). I shall first consider condition (ii). Evaluating the covariance between

the permanent and transitory innovations, we find that

E[ϕtψ
′
t] = (Υ′Υ)−1Υ′C(1)ΣΓ′

r.(25)

For this k×r matrix to be zero, it seems natural to let Γr include Σ−1. That allows us to

focus on the matrix C(1), which is known to have reduced rank. From linear algebra it is

well known that there exists exactly r linearly independent vectors which are orthogonal

to the rows of C(1). Letting Γr = HrΣ
−1, we are therefore seeking an r × n matrix Hr

such that C(1)H ′
r = 0.

One possibility is to consider the space spanned by the columns of γ. From the prop-

erties of the A(1) and C(1) matrices, we have that C(1)γ = 0. In fact, the following

relationship may be established

γ =M−1B(1)D⊥(1)Mα(α′α)−1 =M−1B(1)Pr,(26)
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where Pr is the n × r matrix determined from D = [0 Pr], i.e. Pr = [0 Ir]
′.6 Premulti-

plying γ in equation (26) by C(1), we find that

C(1)γ = (M−1D(1)F (1)M) · (M−1B(1)D⊥(1)Mα(α′α)−1)

= 0,

since D is idempotent, i.e. D(1)D⊥(1) = (In −D)D = 0.

Let Hr = Q−1ζ ′, where Q is an r × r matrix, ζ = γ(Uγ)−1, and U is an r × n matrix

chosen so that Uγ is invertible (the specific use of U will be discussed below). The

covariance matrix for the transitory innovations is then given by

E[ψtψ
′
t] = Q

−1ζ ′Σ−1ζ(Q′)−1.(27)

In order to ensure that this matrix is compatible with the assumption of ψt being mu-

tually independent, Q must be chosen such that ζ ′Σ−1ζ is diagonalized. A convenient

normalization is then to let E[ψtψ
′
t] = Ir. The transitory innovations are now determined

from

ψt = Q
−1ζ ′Σ−1εt.(28)

Accordingly, the matrix Γr is given by Q−1ζ ′Σ−1 so that the matrix Γ becomes

Γ =


 (Υ′Υ)−1Υ′C(1)

Q−1ζ ′Σ−1


 .(29)

It may be noted that the k linearly independent rows of Γk are linearly independent to

the r linearly independent rows of Γr. These properties imply that Γ is of full rank (cf.

Theorem 3.19 in Magnus and Neudecker (1988)).

We are now in a position to state the following result concerning the properties of the

matrix Γ.

Theorem 2. If the n dimensional vector time series {xt} satisfies the assumptions in

Theorem 1, then the n × n nonsingular matrix Γ in equation (29) identifies a common

6This is easily established by noting that Mα(α′α)−1 = [(α′α)−1α′S′
k Ir]′. Premultiplying by D we

obtain Pr . Alternatively, from Theorem 1 we know that B(1) = M [A∗(1)M−1D(1)+γ∗]. Premultiplying
by M−1 and postmultiplying by Pr, we find that M−1B(1)Pr = γ∗Pr. Since γ∗ = [0 γ], it follows that
γ∗Pr = γ.
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trends model, i.e.

R(1) = C(1)Γ−1 = [Υ 0] ,(30)

and ΓΣΓ′ = In. Furthermore,

Γ−1 =
[
Γ+

k Γ+
r

]
=
[
ΣC(1)′Υ(Υ′Υ)−1 ζ(Q′)−1

]
.(31)

From the conclusions in this Theorem it is straightforward to derive the common trends

model in (2) from the reduced form representation in (9). For the trend components we

have that

C(1)ξt = R(1)

[
Γξ0 + Γρt+

t∑
j=1

νj

]
= Υτt,

since µ = Γkρ. Also, from the stationary components we get C∗(L)εt = C∗(L)Γ−1νt so

that Φ(λ) = C∗(λ)Γ−1.

The matrix U can be used to give the transitory disturbances an economic interpre-

tation. Suppose we want to identify the transitory innovations based on their contem-

poraneous relation to ∆x (or to x). In that case, with R(0) = Γ−1 it follows that we

should impose restrictions on Γ+
r . For example, given γ and Q the matrix U can always

be chosen so that r(r−1)/2 elements in γ(Uγ)−1(Q′)−1 are zero. Now suppose Q is lower

triangular and that n = 4 and r = 3. Letting q+ij and ζij denote the (i, j):th elements of

Q−1 and ζ , respectively, we have that

Γ+
r =




ζ11q
+
11

∑2
j=1 ζ1jq

+
2j

∑3
j=1 ζ1jq

+
3j

ζ21q
+
11

∑2
j=1 ζ2jq

+
2j

∑3
j=1 ζ2jq

+
3j

ζ31q
+
11

∑2
j=1 ζ3jq

+
2j

∑3
j=1 ζ3jq

+
3j

ζ41q
+
11

∑2
j=1 ζ4jq

+
2j

∑3
j=1 ζ4jq

+
3j


 .

To exactly identify the transitory innovations we need to consider three restrictions on

this matrix. A simple procedure is to let certain elements of ζ be equal to zero, say, ζ11,

ζ12, and ζ21. This, however, requires that the first and second and either the third or

fourth row of γ are linearly independent. If this is true we can let the 3 × 4 matrix U

be given by a zero–one matrix which appropriately normalizes γ. Accordingly, the first

transitory innovation has a zero contemporaneous effect on the first two elements of ∆x

(and x), while the second transitory innovation has a zero contemporaneous effect on the
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first element of ∆x. On the other hand, if the first and second rows of γ are linearly

dependent another identification procedure has to be considered.

It should be emphasized that a lower triangular Q matrix is neither necessary nor

sufficient for identification of the transitory disturbances. Rather, it is the relationship

between the space spanned by the columns of γ and the mathematical structure of Q

that jointly determine which class of identification procedures that are allowed. This

is analogous to the identification of the permanent shocks in that Υ is a normalisation

of the space spanned by the columns of α⊥ and the choice of Υ0 and structure of π

specify the implications of the identifying assumptions in terms of Υ. Furthermore,

it is straightforward to test whether the desired identification scheme of the transitory

disturbances is consistent with data. By equation (26) we know that γ = M−1B(1)Pr.

Thus, restriction on γ are immediately transformed into restrictions on the Bk matrices

and standard classical tests can thus be applied (see Englund, Vredin, and Warne (1992)

for an application).

4. Inference in the Common Trends Model

In this section we shall analyse the asymptotic properties of estimated impulse response

functions and forecast error variance decompositions. The maintained hypothesis is that

a finite upper bound for the lag order, p̄, of the VAR system in (5) is known. Furthermore,

we assume that the VAR representation is not misspecified. For a recent study of the

consequences of misspecification in VAR models, see Braun and Mittnik (1993).

4.1. Impulse Response Functions. If the lag order of a covariance stationary VAR

is finite and known or if an upper bound for the order is known, results from Baillie

(1981,1987), Schmidt (1973,1974), and others can be applied to obtain the asymptotic

distribution of the estimated Wold VMA and of the impulse response parameters. Also,

the case of unknown and possibly infinite lag order is examined by Lütkepohl (1988,1990)

and Lütkepohl and Poskitt (1990). Furthermore, the asymptotic distribution for the

impulse responses in a cointegrated framework with Gaussian innovations is analysed in

Lütkepohl and Reimers (1992). Unfortunately, neither of these approaches can fully be

applied in the present setting. In particular, while the results in Lütkepohl and Reimers7

imply that some innovations will have a permanent effect on some components of xt,

7They consider a Choleski decomposition of Σ, the covariance matrix of εt.
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permanent and transitory innovations in the sense implied by the common trends model

have generally not been identified.

Without loss of generality, suppose Q is lower triangular, i.e. the transitory innovations

are based on a Choleski decomposition of ζ ′Σ−1ζ .8 Let vec denote the column stacking

operator for any matrix, vech the corresponding operator (primarily used for symmetric

and lower triangular matrices) that only stacks elements on and below the diagonal. The

Kronecker product is denoted by ⊗, the mn ×mn commutation matrix Kmn is defined

such that for any m × n matrix G, Kmnvec(G) = vec(G′), and the m2 × m2 matrix

Nm = 1
2
(Im2 +Kmm). The m2 ×m(m+ 1)/2 duplication matrix Dm is defined such that

Dmvech(G) = vec(G) for any symmetric m ×m matrix G. The Moore–Penrose inverse

of Dm is given by D+
m = (D′

mDm)
−1D′

m, while the m(m+ 1)/2×m2 elimination matrix

Lm is defined such that for any m×m matrix G, vech(G) = Lmvec(G). In addition, if G

is lower triangular, then vec(G) = L′
mvech(G); see Henderson and Searle (1979), Magnus

and Neudecker (1985,1986,1988), and Neudecker (1983). Finally, let
p→ and

d→ denote

convergence in probability and in distribution, respectively, T the sample size for the

estimated parameters, which are denoted by a hat, while N denotes the (multivariate)

normal distribution.

Suppose that we shock ∆xt at t = t
∗ by a one standard deviation change in νt∗ . The

dynamic responses in ∆xt∗+s are then given by

resp(∆xt∗+s) = Rs,(32)

where resp(∆xinf) = lims→∞ resp(∆xt∗+s) = 0. Similarly, the responses in the levels,

xt∗+s, are given by

resp(xt∗+s) =

s∑
j=0

Rj ,(33)

where resp(xinf) = lims→∞ resp(xt∗+s) = R(1) = [Υ 0]. To estimate these impulse re-

sponse functions we replace Rs with R̂s = ĈsΓ̂
−1.

For the purpose of deriving asymptotic distributions of functions of estimated param-

eters a result from Serfling (1980, Theorem 3.3.A) is employed. Let φ ∈ R
m be a vector

8Results similar to those obtained below hold with other Q and π matrices satisfying QQ′ = ζ′Σ−1ζ and
ππ′ = (Υ′

0Υ0)−1Υ′
0C(1)ΣC(1)′Υ0(Υ′

0Υ0)−1, respectively.



20 ANDERS WARNE

of parameters and φ̂ a consistent estimator of φ0, the true value of φ, such that

√
T
(
φ̂− φ0

)
d→ N(0, Vφ).

Suppose f(φ) is a continuously differentiable function which maps φ into R
n and ∂fi/∂φ

′ �=
0 at φ0 for all i ∈ {1, . . . , n}. Then,

√
T
(
f(φ̂)− f(φ0)

)
d→ N(0, Vf),

where

Vf =
∂f

∂φ′
Vφ
∂f

∂φ
,

and (∂f/∂φ) is the transpose of (∂f/∂φ′). This well known result is vital in the following

analysis. Hence, if φ̂ is a consistent estimator of φ and converges at the rate
√
T to a

joint asymptotic normal distribution, then f(φ̂) has similar properties. Accordingly, only

(∂f/∂φ′) has to be derived.

We are now ready to state the main results regarding analytical expressions for the

asymptotic distributions of the impulse response functions.

Theorem 3. (i) If the lag order in equation (12) has a finite upper bound p̄ ≤ p, (ii) {xt}
is cointegrated of order (1,1) with r cointegration vectors, (iii) the estimated cointegration

vectors satisfy
√
T (α̂− α) p→ 0, (iv)

√
T


 β̂ − β
ω̂ − ω


 d→ N




 0

0


 ,

 Vβ 0

0 Vω




 ,

where β = vec(JpB) and ω = vech(Ω), and (v) the matrix Γ is given by equation (29),

with π and Q being lower triangular matrices, then

√
T
(
vec(R̂j)− vec(Rj)

)
d→ N(0, VRj

),(34)

for j = 0, 1, 2, . . . , where

VRj
=
∂vec(Rj)

∂β ′
Vβ
∂vec(Rj)

∂β
+
∂vec(Rj)

∂ω′ Vω
∂vec(Rj)

∂ω
,

and

∂vec(Rj)

∂β ′
=
[
(Γ−1)′ ⊗ In

] ∂vec(Cj)

∂β ′
+ [In ⊗ Cj ]


 ∂vec(Γ+

k )/∂β
′

∂vec(Γ+
r )/∂β

′


 ,
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∂vec(Cj)

∂β ′
=

j−1∑
k=0

[
M ′Jp(B

′)j−1−k ⊗M−1Fk

]− j−2∑
k=0

[
M ′Jp(B

′)j−2−k ⊗M−1DFk

]
,

where the second term on the right hand side is zero for j ≤ 1 and the first term is zero

for j = 0, while

∂vec(Rj)

∂ω′ = [In ⊗ Cj ]


 ∂vec(Γ+

k )/∂ω
′

∂vec(Γ+
r )/∂ω

′


 ,

Furthermore, letting Ep = [In · · · In] be an n× np matrix we have

∂vec(Γ+
k )/∂β

′ = Knk[M
−1ΩF (1)′Ep ⊗ (Υ′Υ)−1Υ′M−1D(1)F (1)]−

[π−1 ⊗ ΣC(1)′Υ(Υ′Υ)−1]KkkL
′
k{LkNk(π ⊗ Ik)L′

k}−1D+
k ×

[(Υ′
0Υ0)

−1Υ′
0C(1)M

−1ΩF (1)′Ep ⊗ (Υ′
0Υ0)

−1Υ′
0M

−1D(1)F (1)],

∂vec(Γ+
r )/∂β

′ = {[Q−1 ⊗ ζ(Q′)−1]KrrL
′
r{LrNr(Q⊗ Ir)L′

r}−1D+
r [Ir ⊗ ζ ′Σ−1]−

[Q−1 ⊗ In]}{[(γ′U ′)−1 ⊗ In]− [(γ′U ′)−1 ⊗ ζU ]}[P ′
rEp ⊗M−1],

whereas

∂vec(Γ+
k )/∂ω

′ = [(Υ′Υ)−1Υ′C(1)M−1 ⊗M−1]Dn − 1
2
[π−1 ⊗ ΣC(1)′Υ(Υ′Υ)−1]Kkk×

L′
k{LkNk(π ⊗ Ik)L′

k}−1D+
k [(Υ

′
0Υ0)

−1Υ′
0C(1)M

−1

⊗(Υ′
0Υ0)

−1Υ′
0C(1)M

−1]Dn,

and

∂vec(Γ+
r )/∂ω

′ = 1
2
[Q−1 ⊗ ζ(Q′)−1]KrrL

′
r{LrNr(Q⊗ Ir)L′

r}−1D+
r ×

[ζ ′M ′Ω−1 ⊗ ζ ′M ′Ω−1]Dn.

The asymptotic distributions for the accumulated response functions are given by

√
T

(
j∑

i=0

vec(R̂i)−
j∑

i=0

vec(Ri)

)
d→ N(0, VΣRj

),(35)

for j = 0, 1, 2, . . . , where

VΣRj
=

(
j∑

i=0

∂vec(Ri)

∂β ′

)
Vβ

(
j∑

i=0

∂vec(Ri)

∂β

)
+

(
j∑

i=0

∂vec(Ri)

∂ω′

)
Vω

(
j∑

i=0

∂vec(Ri)

∂ω

)
,
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and finally,

√
T
(
vec(Υ̂)− vec(Υ)

)
d→ N(0, VΥ),(36)

where

VΥ =
∂vec(Υ)

∂β ′
Vβ
∂vec(Υ)

∂β
+
∂vec(Υ)

∂ω′ Vω
∂vec(Υ)

∂ω
,

while the remaining matrices of partial derivatives are given by

∂vec(Υ)/∂β ′ = [Ik ⊗Υ0]L
′
k{LkNk(π ⊗ Ik)L′

k}−1D+
k ×

[(Υ′
0Υ0)

−1Υ0C(1)M
−1ΩF (1)′Ep ⊗ (Υ′

0Υ0)
−1Υ′

0M
−1D(1)F (1)],

and

∂vec(Υ)/∂ω′ = 1
2
[Ik ⊗Υ0]L

′
k{LkNk(π ⊗ Ik)L′

k}−1D+
k ×

[(Υ′
0Υ0)

−1Υ′
0C(1)M

−1 ⊗ (Υ′
0Υ0)

−1Υ′
0C(1)M

−1]Dn.

A few remarks about the asymptotic covariance matrices for consistent and asymptoti-

cally normal estimators of β and ω may be of interest. Here, I shall only consider the mul-

tivariate least squares and Gaussian maximum likelihood estimators of the parameters.

First, it is well known that such estimators of β and ω are asymptotically independent

under standard assumptions. Moreover, if θ = 0, then the asymptotic covariance matrix

for either estimator of β is given by Vβ = (I−1
Y ⊗Ω), where IY := p limT−1

∑T
t=1 Yt−1Y

′
t−1

is assumed to be nonsingular. If a constant is included in the restricted VAR, the expres-

sion for Vβ looks similar to that above. In fact, letting Y ∗
t := [1 Y ′

t ]
′, the np× (np + 1)

matrix G = [0 Inp], and IY ∗ := p limT−1
∑T

t=1 Y
∗
t−1Y

∗′
t−1, we find that Vβ = (GI

−1
Y ∗G′⊗Ω).

Second, if ηt is i.i.d. Gaussian, from the inverse of the information matrix we find that

Vω = 2D+
n (Ω ⊗ Ω)D+′

n (cf. Magnus and Neudecker (1986)). In practise, the asymptotic

covariance matrices of β̂ and ω̂ are, as usual, estimated by using consistent estimates of

IY ∗ and Ω, respectively.

Second, it can be seen that (ζ, Q) does not influence the upper left nk×nk submatrices

of VRj
and VΣRj

. The diagonal elements of these matrices are the asymptotic variances

of the responses in ∆xt and xt, respectively, from a one standard deviation impulse to

the permanent innovations. Similarly, (Υ0, π) does not appear in the lower right nr× nr
submatrices of these covariance matrices. Hence, identification of the permanent (tran-

sitory) innovations neither influence the estimated impulse responses nor the standard
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errors for the transitory (permanent) innovations. This is clearly a desirable property,

whether we are primarily concerned with the permanent innovations or not.

Third, some of the asymptotic variances may be zero. For example, if an element of

the k:th column of Υ0 is constrained to zero, then the corresponding elements of Υ̂ and

Υ are also zero. Although this is really not troublesome from a theoretical point of view,

in applied work one has to be cautious to this possibility when e.g. t–ratios are calculated

(cf. Lütkepohl (1990)).

Finally, it should be emphasized that estimators of the cointegration vectors generally

converge in probability at the rate
√
T (see Johansen (1991), Park (1992), and Stock

(1987)). That is, if an estimator of α (and, hence, of M) is consistent, it also converges

in probability at the rate
√
T . Accordingly, in terms of asymptotics, an estimator of the

matrix M may be treated as if it is known. This is related to the result in Warne (1992)

that the multivariate least squares estimator of the parameters in A(λ) has identical

limiting distributions for the cases when these parameters are estimated freely and un-

der cointegration restrictions. Also, since the cointegration vectors determine the space

spanned by the columns of Υ0 it follows that for estimators of α which converge in prob-

ability at the rate
√
T (to its true value), the corresponding estimator of Υ0 converges in

probability at the rate
√
T as well.

4.2. Forecast Error Variance Decompositions. To my knowledge, the only papers

which provide analytical expressions of the asymptotic distributions of estimated forecast

error variance decompositions are those by Lütkepohl (1990) and Lütkepohl and Poskitt

(1990). Lütkepohl shows that the asymptotic variances are quite easy to calculate when

the lag order in a VAR model for covariance stationary time series has a known upper

bound. In case the lag order is unknown and possibly infinite, then the asymptotic

variances of forecast error variance decompositions can be derived under the assumptions

made by Lütkepohl and Poskitt.

Before the main results are stated and proven, some additional notation will be useful.

Let vil,s denote the fraction of the s steps ahead forecast error variance of ∆xi which is

accounted for by shocks in νl, where i, l ∈ {1, . . . , n}. Similarly, v∗il,s is the fraction of the

s steps ahead forecast error variance of xi which is accounted for by shocks in νl, whereas

v̄il denotes the long run fraction of the forecast error variance in the levels series xi which
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is accounted for by shocks in νl. Accordingly,

vil,s =

∑s
j=1(e

′
iRj−1el)

2∑s
j=1 e

′
iRj−1R′

j−1ei
,

for i, l ∈ {1, . . . , n} and s = 1, 2, . . . . Here, ei is the i:th column of In. Furthermore,

letting R∗
m =

∑m
j=1Rj−1, we have that

v∗il,s =
∑s

m=1(e
′
iR

∗
mel)

2∑s
m=1 e

′
iR

∗
mR

∗′
mei
,

for i, l ∈ {1, . . . , n} and s = 1, 2, . . . , and finally,

v̄il =
(e′iΥel(k))

2

e′iΥΥ′ei
,

for i ∈ {1, . . . , n} and l ∈ {1, . . . , k}. Here, el(k) is the l:th column of Ik.

As we shall soon see, it is preferable from a theoretical perspective to examine the

forecast error variance decompositions is terms of matrices. In particular, letting �
denote the Hadamard product (see e.g. Magnus and Neudecker (1988)) we find that

vs =

[
s∑

j=1

(
Rj−1R

′
j−1 � In

)]−1 [ s∑
j=1

(Rj−1 �Rj−1)

]
,(37)

for s = 1, 2, . . . . The (i, l):th element of vs is vil,s. Furthermore,

v∗s =

[
s∑

m=1

(R∗
mR

∗′
m � In)

]−1 [ s∑
m=1

(R∗
m �R∗

m)

]
,(38)

whereas

v̄inf = [ΥΥ′ � In]−1
[Υ�Υ] .(39)

The (i, l):th elements of these two matrices correspond to v∗il,s and v̄il, respectively. It

should be noted that if all elements in some row of Υ0 are equal to zero, this row must

be deleted from Υ̂ when computing ˆ̄vinf . The reason is, of course, that the corresponding

diagonal element of Υ̂Υ̂′ is zero and [Υ̂Υ̂′ � In] is consequently singular.

For any m× n matrix G, let diag[vec(G)] denote the mn×mn diagonal matrix whose

diagonal elements are given by vec(G). Regarding the asymptotic distributions of the

estimated forecast error variance decompositions it can now be stated that:
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Theorem 4. If the assumptions in Theorem 3 are satisfied, then

√
T (vec(v̂s)− vec(vs))

d→ N(0, ws),(40)

for s = 1, 2, . . . , where

ws =
∂vec(vs)

∂β ′
Vβ
∂vec(vs)

∂β
+
∂vec(vs)

∂ω′ Vω
∂vec(vs)

∂ω
,

while

∂vec(vs)/∂β
′ = 2[In ⊗ [

∑s
i=1(Ri−1R

′
i−1 � In)]−1

]
∑s

j=1{diag[vec(Rj−1)]−

[v′s ⊗ In]diag[vec(In)][Rj−1 ⊗ In]}(∂vec(Rj−1)/∂β
′),

∂vec(vs)/∂ω
′ = 2[In ⊗ [

∑s
i=1(Ri−1R

′
i−1 � In)]−1

]
∑s

j=1{diag[vec(Rj−1)]−

[v′s ⊗ In]diag[vec(In)][Rj−1 ⊗ In]}(∂vec(Rj−1)/∂ω
′).

Regarding the asymptotic distribution of v̂∗s , we have that

√
T (vec(v̂∗s)− vec(v∗s))

d→ N(0, w∗
s),(41)

for s = 1, 2, . . . , where

w∗
s =

∂vec(v∗s)
∂β ′

Vβ
∂vec(v∗s)
∂β

+
∂vec(v∗s)
∂ω′ Vω

∂vec(v∗s)
∂ω

,

while

∂vec(v∗s)/∂β
′ = 2[In ⊗ [

∑s
i=1(R

∗
iR

∗′
i � In)]−1

]
∑s

m=1{diag[vec(R∗
m)]−

[v∗′s ⊗ In]diag[vec(In)][R∗
m ⊗ In]}(∂vec(R∗

m)/∂β ′),

∂vec(v∗s)/∂ω
′ = 2[In ⊗ [

∑s
i=1(R

∗
iR

∗′
i � In)]−1

]
∑s

m=1{diag[vec(R∗
m)]−

[v∗′s ⊗ In]diag[vec(In)][R∗
m ⊗ In]}(∂vec(R∗

m)/∂ω′).

Finally, the asymptotic distribution for ˆ̄vinf is given by

√
T
(
vec(ˆ̄vinf)− vec(v̄inf)

) d→ N(0, w̄inf),(42)

where

w̄inf =
∂vec(v̄inf)

∂β ′
Vβ
∂vec(v̄inf)

∂β
+
∂vec(v̄inf)

∂ω′ Vω
∂vec(v̄inf)

∂ω
,
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while

∂vec(v̄inf)/∂β
′ = 2[Ik ⊗ [ΥΥ′ � In]−1]{diag[vec(Υ)]−

[v̄′inf ⊗ In]diag[vec(In)][Υ⊗ In]}(∂vec(Υ)/∂β ′),

∂vec(v̄inf)/∂ω
′ = 2[Ik ⊗ [ΥΥ′ � In]−1]{diag[vec(Υ)]−

[v̄′inf ⊗ In]diag[vec(In)][Υ⊗ In]}(∂vec(Υ)/∂ω′).

In a common trends framework it may be of particular interest to study the joint

influence of e.g. the permanent versus that of the transitory innovations on the forecast

error variance of the time series. Other linear functions of variance decompositions that

can be relevant in empirical studies of macroeconomic time series are sums of real versus

sums of nominal innovations and sums of domestic versus sums of foreign innovations.

To examine such linear functions, let G be an n × q matrix and Ḡ be a k × q matrix

whose rows are taken from the first k rows of G. Consider the matrix functions

Hs = vsG,

H∗
s = v∗sG,

H̄inf = v̄infḠ,

(43)

for s = 1, 2, . . . . The following results can easily be proven:

Corollary 1. If the assumptions in Theorem 3 are satisfied, then

√
T
(
vec(Ĥs)− vec(Hs)

)
d→ N(0, [G′ ⊗ In]ws[G⊗ In]),(44)

√
T
(
vec(Ĥ∗

s )− vec(H∗
s )
)

d→ N(0, [G′ ⊗ In]w∗
s [G⊗ In]),(45)

for s = 1, 2, . . . , while

√
T
(
vec( ˆ̄H inf)− vec(H̄inf)

)
d→ N(0, [Ḡ′ ⊗ In]w̄inf [Ḡ⊗ In]).(46)

The asymptotic covariance matrices in Theorem 4 take into account that the rows of

vs, v
∗
s , and v̄inf sum to one. Accordingly, the rank of ws and w∗

s is (less than or) equal

to n(n − 1), while the rank of w̄inf is (less than or) equal to n(k − 1). It then follows

that formal significance tests of the hypothesis that an element of, say, vs is equal to
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zero or one cannot be conducted since the corresponding standard error is equal to zero.9

Furthermore, by using the technique which allows us to derive the partial derivatives in

Theorem 4 it can be shown that the expressions given by Lütkepohl (1990) indeed also

take into account that the sum of a variance decomposition is always equal to one.

The reduced rank property of the covariance matrices can be stated in a very simple

yet general form. Let ım be the m× 1 unit vector. We then have that:

Corollary 2. If G = ın and Ḡ = ık, then the asymptotic covariance matrices in Corollary

1 are equal to zero.

This result can now be used to determine the asymptotic relationship between two

groups of innovations for a particular variance decomposition. In particular, let g be an

n× 1 vector with known elements and g⊥ := ın − g. Similarly, let ḡ be the k × 1 vector

obtained from the first k elements of g and ḡ⊥ := ık − ḡ. It now follows that

Corollary 3. The asymptotic covariance matrices in Corollary 1 are equal for G = g

and G = g⊥ for s = 1, 2, . . . and also for Ḡ = ḡ and Ḡ = ḡ⊥.

Hence, letting G = g be a vector with ones in the first k elements and zeros elsewhere

or vice versa, i.e. G = g⊥, will provide us with identical estimates of the asymptotic

covariances matrices for Ĥs and Ĥ∗
s . That is, the standard error for an estimate of the

joint influence of the permanent innovations in a variance decomposition is equal to the

standard error for an estimate of the joint influence of the transitory innovations.

5. Concluding Comments

In this paper I analyse how we can estimate and conduct inference in a common

trends model with k permanent and r transitory innovations when the time series are

cointegrated of order (1,1) with r cointegrating vectors. Such innovations may be of

particular interest when we are interested in studying connections between growth and

business cycle fluctuations in macroeconomic time series.10 Theorem 1, a version of the

well known Granger’s representation theorem, shows how all reduced form parameters

9In fact, if the asymptotic standard errors would not be zero under such null hypotheses we would be
alarmed since the variance decompositions are bounded by zero and one. In fact, this suggests that the
limiting distributions are generally associated with smaller standard errors the closer the true value of a
variance decomposition gets to either of these bounds.
10Readers interested in macroeconomic applications are referred to papers by Englund, Vredin and Warne
(1992) (who study the behavior of output, money, the price level, the interest rate, public consumption
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can be calculated directly from the (estimated) parameters of a restricted VAR. The

restrictions this model satisfies are the cointegration constraints which may, e.g., describe

the steady state of a stochastic growth model. Furthermore, a simple description of the

solution to the unrestricted and restricted VAR as well as to the VEC representation in

terms of estimable parameters is provided. The solution is expressed as a Wold VMA

representation which describes a reduced form of the propagation mechanism.

Second, an identification matrix for permanent and transitory innovations has been

derived. Since this matrix is generally not triangular and is based on certain assumptions

regarding the nature of permanent and transitory innovations, it cannot be computed

by a Choleski, an eigen, or a method of moments decomposition of Σ. However, it is

shown that its parameters are solely determined by parameters which have already been

calculated and is therefore easily obtained in practise.

Third, I have analysed the asymptotic properties of impulse response functions and

forecast error variance decompositions within a common trends model given an upper

bound for the lag order. Such functions are calculated directly from the Wold VMA

representation and from the identification matrix. Based on the results in Theorems 3

and 4, we find that the analytical expressions of the asymptotic covariances are somewhat

more complex than in the model studied by Lütkepohl and Reimers (1992). The reason for

the added complexity is that I have analysed identification of permanent and transitory

innovations, whereas Lütkepohl and Reimers study the case when the covariance matrix Σ

is orthogonalized via a Choleski decomposition. From a practical point of view, however,

the added complexity is not severe. For example, to compute estimates of the asymptotic

covariance matrices of impulse response functions is about as time consuming as for

ordinary VAR’s. Moreover, Corollary 1 provides us with asymptotic distributions of

the estimated forecast error variances which are accounted for by linear functions of the

innovations. Based on these distributions it is, e.g. possible to analyse how important

innovations to growth are, at a business cycle horizon, relative to transitory shocks for

the time series of interest. Also, it highlights the fact that the asymptotic covariance

and foreign output in a common trends framework), Jacobson, Vredin and Warne (1993) (output, em-
ployment, unemployment and real product wages), and Mellander, Vredin and Warne (1992) (output,
consumption, investments and terms of trade). Other applied studies on common trends include Blake-
more and Hoffman (1993), Blanchard and Quah (1989), KPSW (1987,1991), and Shapiro and Watson
(1988).
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matrices of the estimated forecast error variance decompositions are conditioned on the

property that the sum of a decomposition for any time series is equal to one.
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Mathematical Appendix

Proof of Theorem 2: Let us partition the inverse of Γ into

Γ−1 =
[
Γ+

k Γ+
r

]
,

where Γ+
k and Γ+

r are n×k and n×r matrices, respectively. Postmultiplying Γ in equation

(29) by this expression for Γ−1, we obtain

ΓΓ−1 =


 (Υ′Υ)−1Υ′C(1)Γ+

k (Υ′Υ)−1Υ′C(1)Γ+
r

Q−1ζ ′Σ−1Γ+
k Q−1ζ ′Σ−1Γ+

r


 = In.

Letting Γ+
r = ζ(Q′)−1 and Γ+

k = ΣC(1)′Υ(Υ′Υ)−1 we have found the inverse of Γ. Sub-

stituting for these relationships in equation (30), we have that

R(1) = [R(1)k R(1)r] =
[
C(1)ΣC(1)′Υ(Υ′Υ)−1 C(1)ζ(Q′)−1

]
.

Clearly, R(1)k = C(1)ΣC(1)′Υ(Υ′Υ)−1 = Υ since C(1)ΣC(1)′ = ΥΥ′, while R(1)r = 0

by virtue of the fact that C(1)ζ = 0. Finally, it is obvious from the above analysis that

ΓΣΓ′ = In. Q.E.D.

Before we prove Theorems 3 and 4 the following Lemma is useful:

Lemma 1. Let A, B and C be n × n matrices with B nonsingular and A := B−1CB.

Suppose that

√
T
(
vec(B̂)− vec(B)

)
p→ 0,(A.1)

while Ĉ is a consistent estimator of C with

√
T
(
vec(Ĉ)− vec(C)

)
d→ N (0,Σ) .(A.2)

It then follows that Â = B̂−1ĈB̂ is a consistent estimator of A and

√
T
(
vec(Â)− vec(A)

)
d→ N

(
0,
[
B′ ⊗ B−1

]
Σ
[
B ⊗ (B′)−1

])
.(A.3)

Proof: It is straightforward to show that

Â−A = B−1
(
Ĉ − C

)
B +B−1Ĉ

(
B̂ − B

)
+
(
B̂−1 −B−1

)
ĈB̂.
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It now follows from (A.1) that

√
TB−1Ĉ

(
B̂ −B

)
p→ 0.

Similarly, since B−1 is a continuous function of B by Mann and Wald’s theorem (see e.g.

Serfling (1980, p. 24) we find that

√
T
(
B̂−1 − B−1

)
ĈB̂

p→ 0.

Using this, equation (A.2), and taking vec’s of (Â−A) the conclusion follows. Q.E.D.

This lemma thus illustrates that an estimator which converges in probability (to its true

value) at the rate
√
T can be treated as known when we study a function that depends on

estimates that converge in probability as well as estimates that converge in distribution

at the rate
√
T . Hence, the lemma is a special case of Slutzky’s theorem (see e.g. Serfling

(1980, p. 19)). Since the condition
√
T (α̂ − α) p→ 0 implies that

√
T (M̂ − M)

p→ 0

and
√
T (Υ̂0 − Υ0)

p→ (and the assumption about the limiting behavior of β and ω in

Theorem 3 is consistent with this; cf. Johansen (1991) or Warne (1992)), it follows that

M̂ and Υ̂0 can be treated as known when we examine the limiting behavior of Ĉj , R̂j ,

etc.

Proof of Theorem 3: In order to derive the matrices in equation (34), note that

the following relationships hold: Rj = CjΓ
−1, Γ−1 = [ΣC(1)′Υ(Υ′Υ)−1 ζ(Q′)−1], Σ =

M−1Ω(M ′)−1, ζ = γ(Uγ)−1, γ =M−1(In − JpBE
′
p)Pr, Υ = Υ0π, QQ

′ = ζ ′Σ−1ζ , and

ππ′ = (Υ′
0Υ0)

−1Υ′
0C(1)ΣC(1)

′Υ0(Υ
′
0Υ0)

−1.

Then, taking vec’s of the first differential of Rj, we find that

dvec(Rj) =
[
(Γ−1)′ ⊗ In

]
dvec(Cj) + [In ⊗ Cj]


 dvec(Γ+

k )

dvec(Γ+
r )


 .(A.4)

From equation (21) we know that

dCj =

j−1∑
k=0

M−1JpB
kdBBj−1−kJ ′

pM −
j−2∑
k=0

M−1DJpB
kdBBj−2−kJ ′

pM,
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where the second term on the right hand side is zero for j ≤ 1 and the first term is equal

to zero for j = 0 since dF0 = 0. Noting that dB = J ′
pdb, where b = [B1 · · · Bp], and

applying the vec operator we have

dvec(Cj) =

{
j−1∑
k=0

[
M ′Jp(B

′)j−1−k ⊗M−1Fk

]− j−2∑
k=0

[
M ′Jp(B

′)j−2−k ⊗M−1DFk

]}
dβ,

where Fk = JpB
kJ ′

p.

Before we consider dvec(Γ+
k ), note that

Υ(Υ′Υ)−1 = Υ0π(π
′Υ′

0Υ0π)
−1 = Υ0(Υ

′
0Υ0)

−1(π′)−1.

Since Υ̂0 can be treated as known we only need to consider π when deriving the first

differential of Υ(Υ′Υ)−1.

The first differential of Γ+
k is equal to

dΓ+
k = (dΣ)C(1)′Υ(Υ′Υ)−1 + Σ(dC(1)′)Υ(Υ′Υ)−1

−ΣC(1)′Υ0(Υ
′
0Υ0)

−1(π′)−1(dπ′)(π′)−1.

Taking vec’s and using the commutation matrix, we have that

dvec(Γ+
k ) = [(Υ′Υ)−1Υ′C(1)⊗ In]dvec(Σ) + [(Υ′Υ)−1Υ′ ⊗ Σ]Knndvec(C(1))

−[π−1 ⊗ ΣC(1)′Υ(Υ′Υ)−1]Kkkdvec(π).
(A.5)

From the function mapping the parameters of Ω into Σ, we get

dvec(Σ) = [M−1 ⊗M−1]dvec(Ω) = [M−1 ⊗M−1]Dndω.(A.6)

Furthermore, by Theorem 1 it immediately follows that

dvec(C(1)) = [M ′F (1)′Ep ⊗M−1D(1)F (1)]dβ.(A.7)

Next, the matrix π is lower triangular and obtained from a symmetric matrix. Lemma 1

in Lütkepohl (1989) implies that

dvech(π) = {2LkNk(π ⊗ Ik)L′
k}−1

dvech(ππ′).

From the properties of the elimination and duplication matrices, we then find that

dvec(π) = L′
k{2LkNk(π ⊗ Ik)L′

k}−1
D+

k dvec(ππ
′).(A.8)
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The first differential of ππ′ is

d(ππ′) = (Υ′
0Υ0)

−1Υ′
0(dC(1))ΣC(1)

′Υ0(Υ
′
0Υ0)

−1+

(Υ′
0Υ0)

−1Υ′
0C(1)Σ(dC(1)

′)Υ0(Υ
′
0Υ0)

−1+

(Υ′
0Υ0)

−1Υ′
0C(1)(dΣ)C(1)

′Υ0(Υ
′
0Υ0)

−1.

Taking vec’s and making use of the commutation and N matrices, we find that

dvec(ππ′) = 2Nk[(Υ
′
0Υ0)

−1Υ′
0C(1)Σ⊗ (Υ′

0Υ0)
−1Υ′

0]dvec(C(1))+

[(Υ′
0Υ0)

−1Υ′
0C(1)⊗ (Υ′

0Υ0)
−1Υ′

0C(1)]dvec(Σ),
(A.9)

by employing Lemma 4 in Magnus and Neudecker (1986). Substituting for the expressions

in equation (A.6)–(A.9) into (A.5), using the relationship between Σ and Ω, and the fact

that D+
k Nk = D+

k (see Theorem 3.12 in Magnus and Neudecker (1988)), the matrices

with partial derivatives of vec(Γ+
k ) with respect to β and ω follow directly.

The first differential of Γ+
r is

dΓ+
r = (dζ)(Q′)−1 − ζ(Q′)−1(dQ′)(Q′)−1.

Taking vec’s we get

dvec(Γ+
r ) = [Q−1 ⊗ In]dvec(ζ)− [Q−1 ⊗ ζ(Q′)−1]Krrdvec(Q).(A.10)

Next, the first differential of ζ is

dζ = (dγ)(Uγ)−1 − ζU(dγ)(Uγ)−1,

whereas the first differential of γ is

dγ = −M−1Jp(dB)E
′
pPr.

Combining these two relationships and employing the vec operator we obtain

dvec(ζ) =
{
[(γ′U ′)−1 ⊗ ζU ]− [(γ′U ′)−1 ⊗ In]

}
[P ′

rEp ⊗M−1]dβ,(A.11)

since dvec(B) = [Inp ⊗ J ′
p]dβ and JpJ

′
p = In.

With Q being lower triangular, Lemma 1 in Lütkepohl (1989) provides us with

dvec(Q) = L′
r{2LrNr(Q⊗ Ir)L′

r}−1
D+

r dvec(QQ
′).(A.12)
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The first differential of QQ′ is

d(QQ′) = (dζ ′)Σ−1ζ + ζ ′Σ−1(dζ)− ζ ′Σ−1(dΣ)Σ−1ζ.

Taking vec’s, we get

dvec(QQ′) = 2Nr[Ir ⊗ ζ ′Σ−1]dvec(ζ)− [ζ ′Σ−1 ⊗ ζ ′Σ−1]dvec(Σ).(A.13)

Substituting for the expressions in equations (A.6) and (A.11)–(A.13) into (A.10) and

making use of the property D+
r Nr = D

+
r , the matrices with partial derivatives of vec(Γ+

r )

with respect to β and ω are immediate. Finally, equations (35) and (36) follow di-

rectly from (34), the above expressions, and the fact that dvec(Υ) = [Ik ⊗ Υ0]dvec(π).

Q.E.D.

Proof of Theorem 4: Comparing the expressions for vs, v
∗
s and v̄inf it is obvious that the

asymptotic covariance matrices for estimates of these functions have a similar parametric

structure. Hence, I shall limit the proof to equation (40).

To derive the matrices of partial derivatives of vec(vs) with respect to β and ω, note

that the first differential of vs is given by

dvs = −[
∑s

i=1(Ri−1R
′
i−1 � In)]−1[

∑s
j=1 d(Rj−1R

′
j−1 � In)]vs+

[
∑s

i=1(Ri−1R
′
i−1 � In)]−1[

∑s
j=1 d(Rj−1 �Rj−1)]

= [
∑s

i=1(Ri−1R
′
i−1 � In)]−1

∑s
j=1{[(dRj−1 �Rj−1) + (Rj−1 � dRj−1)]

−[(d(Rj−1R
′
j−1)� In)]vs}.

Taking vec’s and using Lemma 2 in Magnus and Neudecker (1985), we obtain

dvec(vs) = [In ⊗ [
∑s

i=1(Ri−1R
′
i−1 � In)]−1]

∑s
j=1{2diag[vec(Rj−1)]dvec(Rj−1)

−[v′s ⊗ In]diag[vec(In)]dvec(Rj−1R
′
j−1)}.

(A.14)

The first differential of Rj−1R
′
j−1 is

d(Rj−1R
′
j−1) = (dRj−1)R

′
j−1 +Rj−1(dR

′
j−1).
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Applying the vec operator and the commutation matrix, we have that

dvec(Rj−1R
′
j−1) = [Rj−1 ⊗ In]dvec(Rj−1) + [In ⊗ Rj−1]Knndvec(Rj−1)

= 2Nn[Rj−1 ⊗ In]dvec(Rj−1),
(A.15)

by Lemma 4 in Magnus and Neudecker (1986). Subsituting equation (A.15) for the first

differential dvec(Rj−1R
′
j−1) into equation (A.14), it is clear that equation (40) follows if

diag[vec(In)]Nn = diag[vec(In)]Knn = diag[vec(In)].

If the second equality is valid, the first is an immediate consequence of the definition of

Nn. To show the second, note that

diag[vec(In)] =




e1e
′
1 ⊗ e′1

e2e
′
2 ⊗ e′2
...

ene
′
n ⊗ e′n



,(A.16)

whereas

Knn =




In ⊗ e′1
In ⊗ e′2

...

In ⊗ e′n



.(A.17)

Since Knn is symmetric (cf. Magnus and Neudecker (1988), p. 47) the result follows from

an inspection of (A.16) and (A.17). Q.E.D.

Proof of Corollary 3: Below I shall show that for any n× 1 vector g with g⊥ := ın − g
the following equality holds true:

[g′ ⊗ In]ws[g ⊗ In] = [g′⊥ ⊗ In]ws[g⊥ ⊗ In].

The two remaining equalities then follow from similar arguments.

The first differential of vsın ≡ ın is

(dvs)ın = 0.
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Using the fact that ın = g + g⊥, we obtain

(dvs)g = −(dvs)g⊥.

Taking vec’s provides us with

[g′ ⊗ In]dvec(vs) = −[g′⊥ ⊗ In]dvec(vs),

or in terms of partial derivatives

[g′ ⊗ In]∂vec(vs)
∂β ′

= −[g′⊥ ⊗ In]∂vec(vs)
∂β ′

,(A.18)

and

[g′ ⊗ In]∂vec(vs)
∂ω′ = −[g′⊥ ⊗ In]∂vec(vs)

∂ω′ .(A.19)

Postmultiplying both sides of (A.18) by Vβ times the transpose of the expression in the

equation we get

[g′ ⊗ In]∂vec(vs)
∂β ′

Vβ
∂vec(vs)

∂β
[g ⊗ In] = [g′⊥ ⊗ In]∂vec(vs)

∂β ′
Vβ
∂vec(vs)

∂β
[g⊥ ⊗ In].(A.20)

Similarly, for (A.19) we find that

[g′ ⊗ In]∂vec(vs)
∂ω′ Vω

∂vec(vs)

∂ω
[g ⊗ In] = [g′⊥ ⊗ In]∂vec(vs)

∂ω′ Vω
∂vec(vs)

∂ω
[g⊥ ⊗ In].(A.21)

Adding the expressions in equations (A.20) and (A.21) the result follows. Q.E.D.
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