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Abstract: This note discusses a simple switching algorithm for estimating a VAR model subject
to cointegration restrictions under linear restriction on the moving average impact (C) matrix.
The algorithm is based on the Gaussian likelihood function, but the estimated parameters are
generally not maximum likelihood. Only in the rare event that either the cointegration space is
known or we are unwilling to directly influence this space through restrictions on the C matrix
can the estimates of the free parameters be considered maximum likelihood.
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1. Setup

The model is written as
y = ΨX + ε, (1)

where y is p × T with typical column ∆xt, X is d + p(k − 1) + r × T with typical column Xt =
[Dt,∆xt−1, . . . ,∆xt−k+1, β

′xt−1] where Dt is a vector with deterministic variables (constant,
linear trend, seasonal dummies, etc.), while ε is p × T , with εt ∼ N(0,Ω). We may, without
loss of generality, also let any constant term or linear trend in an error correction model be
restricted by a minor change in the definition of Xt. Regarding Ψ we may express it as Ψ =
[µ Γ1 · · · Γk−1 α].

The restrictions of interest can be written as:

f(Ψ, β) = Rvec(C) − r, (2)

where C = β⊥(α′⊥Γβ⊥)−1
α′⊥, with Γ = Ip −

∑k−1
i=1 Γi.

The idea is to estimate Ψ and β under the restrictions in (2) using a switching algorithm,
where Ψ (and Ω) is estimated conditional on β and β is then re-estimated conditional on Ψ
(and Ω). We continue with this until we have obtained convergence.

2. Estimation of Ψ and Ω Conditional on β

By setting up the usual log-likelihood function we have that

ΛT = −1
2
pT log(2π) − T

2
log det(Ω) − 1

2
tr(Ω−1εε′). (3)

We shall maximize this function with respect to Ψ, Ω subject to (2). Letting ψ = vec(Ψ) it can
be shown that the following must be satisfied by a solution to the optimization problem:

ψ̄ = ψ̂ − [(XX′)−1 ⊗ Ω̄]g′ψ{gψ[(XX′)−1 ⊗ Ω̄]g′ψ}
−1
f(Ψ̂, β), (4)

while Ω̄ = T−1ε̄ε̄′, where ψ̂ is the unrestricted estimate of ψ. Moreover, gψ are the partial
derivatives of f with respect to ψ′, i.e.,

gψ =
∂f

∂ψ′ = R[ξ′ ⊗ C], (5)
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where ξ′ = C′(ı′
k−1 ⊗ Ip)JΓ + (C′Γ′ − Ip)α(α′α)−1

Jα, while ΨJ ′Γ = [Γ1 · · · Γk−1] and ΨJ ′α = α. A
similar expression for the partial derivatives of vec(C) with respect to ψ is given in Johansen’s
(1996) book and in Paruolo’s (1997) article on the C matrix.

Notice first that I have used a first order Taylor approximation of the restrictions to obtain
(4), namely

f(ψ̄, β) = f(ψ̂, β) + gψ(ψ̄ − ψ̂). (6)
Second, the equations do not provide us with a solution for ψ̄ and Ω̄. They merely represent a
form of expressing conditions which the restricted parameters must satisfy. Furthermore, they
rely on f(ψ̄, β) = 0. Finally, one need to keep in mind that multiple restrictions on C may turn
out to be linearly dependent. In that case, the row rank of gψ is lower than the number of rows.
Any such dependencies must be removed before estimation is attempted. This can typically be
done by using random numbers for all the free parameters and checking the row rank of gψ.
Should it be less than the number of rows, then remove all rows which are linearly dependent
from gψ and remove the corresponding restrictions from f(Ψ, β).

To use this in practise one approach is to proceed as follows:

(1) For the first iteration, replace Ω̄ with Ω̂ while gψ is evaluated at ψ̂ and β (where the
latter is just sloppy notation for the original estimate of β) in equation (4). This allows
us to calculate ψ̄1 and Ω̄1;

(2) For iteration i (i = 2,3, . . .) we replace ψ̂ with ψ̄i−1, Ω̄ with Ω̄i−1, gψ and f are evaluated
at ψ̄i−1 and β in equation (4). This gives us ψ̄i and Ω̄i;

(3) We continue with the previous step until f(ψ̄i, β) is sufficiently close to zero.

3. Estimation of β Conditional on Ψ and Ω

If we want to re-estimate β, which we probably want to since it can increase the value of the
log-likelihood, then β is estimated conditional on ψ̄. For that case, it is not necessary to involve
the restrictions on C since they are already satisfied by the initial β.1 Instead, one can estimate β
conditional on ψ̄ and Ω̄ subject to whatever restrictions we have on β. Once we have an updated
β we merely return to the estimation of ψ conditional on the new β.

While there are several ways we can proceed, one natural approach is to return directly to
the log-likelihood function, condition it on Ψ and Ω and maximize it with respect to β. Let us
therefore consider the following representation of equation (1)

Z0 − ΦZ2 − αβ′Z1 = ε, (7)

where Φ = [µ Γ1 · · · Γk−1], Z0 = y, etc. Substituting for ε in equation (3), evaluating (Ψ,Ω)
at (Ψ̄, Ω̄), and differentiating the log-likelihood function with respect to β we obtain:

∂ΛT
∂vec(β)′

= vec(Z1ε
′)′[Ω−1α⊗ Ip]. (8)

Next, we can express the restrictions on β in the following form for the columns of β:

βi = hi +Hiϕi, i = 1, . . . , r, (9)

or
vec(β) = h +Hϕ, (10)

where ϕ gives all the free parameters of β. Technically, we may also consider further general-
izations for restrictions on β, but for the purposes here the above format will do.

Taking the restrictions on β into account for the maximization of the conditional log-likelihood
function means that the ML estimator of ϕ has to satisfy

∂ΛT
∂ϕ′ = vec(Z1ε

′)′[Ω−1α⊗ Ip]H = 0. (11)

1 They could, of course, still be included.
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This implies that the (conditional) ML estimator of ϕ is given by:

ϕ̄ =
[
H′[α′Ω−1α⊗M11]H

]−1

H′[α′Ω−1 ⊗ Ip]
(
vec(M10 −M12Φ′) − [α⊗M11]h

)
,

(12)

whereMij = (1/T)ZiZ′
j while Φ, α, and Ω are evaluated at Φ̄, ᾱ, and Ω̄ from the previous step

in the algorithm.
Notice that the β estimation part of the algorithm directly gives us a new value without

resorting to any iterations. Had we used a general form for our restrictions on β this need
not have been possible. Still, as long as the restrictions on β we wish to use are linear, then
this part of the algorithm does not require iterations. For example, linear cross-equation (or,
more accurately, cross-column) restrictions can be handled and would be more general than
the simple restrictions in (9). Linear cross-equation restrictions can be expressed in the form of
(10) and the expression for the (conditional) ML estimator of ϕ is therefore unchanged.

Given ϕ̄ we have a new value for β and we may now return to the estimation of ψ conditional
on this value for β. To begin with we evaluate the restrictions to check if they are sufficiently
close to zero (a new value for β may affect the value for these restrictions). If the answer is no
we repeat the steps for estimating ψ, Ω conditional on β and then β conditional on ψ.

4. Comments

This algorithm does not produce ML estimates unless β is known, in which case it doesn’t
have to be estimated, or we wish to exclude restrictions on C from appearing directly on β. A
simple example of why the algorithm generally does not produce ML estimates is the following
bivariate case with k = 1 and r = 1. Letting β = [1 β1]′ and α = [α1 α2]′ we find that C is
given by:

C =
1

α1 − α2β1

[
α2β1 −α1β1

−α2 α1

]
.

Suppose we want to estimate such a model under the restriction that C12 = 0. This holds if
either α1 = 0 or β1 = 0. Both of these restrictions cannot be satisfied as that would violate the
condition that C has rank 1 (in fact, that would make the process for xt I(2) unless α2 = 0).
The algorithm will impose the α1 = 0 restriction, while β1 = 0 would not be considered. Since
the latter case may produce a higher value for the likelihood function than the former, the
algorithm generally won’t produce ML estimates. However, if β1 is known or we wish to exclude
the possibility that the first variable in the xt vector is stationary, then the outcome of the
algorithm is indeed ML. In practise, such circumstances will be rare.

Estimating Ψ, β and Ω under ML may require that the partial derivatives of C with respect
to β are somehow taken into account. A switching algorithm based on the ideas above and this
feature could potentially produce ML estimates under linear restrictions on C.

The asymptotic distribution of Ψ under C restrictions can easily be derived from equation
(4). With the exception of parameters on the deterministic variables the limiting distribution of√
T(ψ̄ − ψ) is Gaussian with zero mean. Specifically, the asymptotic behavior of

√
T(ψ̄ − ψ) is

linearly related to the asymptotic behavior of
√
T(ψ̂ − ψ) through:

√
T(ψ̄ − ψ) =

[
I − [(XX′)−1 ⊗ Ω]g′ψ{gψ[(XX′)−1 ⊗ Ω]g′ψ}

−1
gψ

]√
T(ψ̂ − ψ) + oP (1).

The algorithm can also be used when additional restrictions on Ψ need to be considered.
Such restrictions may be either linear or non-linear. For such cases we simply replace equations
(2) and (5) with the corresponding form of the restrictions and their partial derivatives. Part
of these may be linear restrictions on C. Whatever these restrictions may be it is important to
keep in mind that gψ need not have full row rank, i.e., some of the restrictions may be linearly
dependent. Should this occur, then the “redundant” restrictions need to be removed from f
prior to estimation.
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