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2. Macroeconomic Background

Example: Let Yt and Ct denote (the natural logarithms of) aggregate income and consump-

tion, respectively. Consider the following version of the permanent income hypothesis (PIH)

for t = 1,2, . . . :

Yt = Y p
t + vt, (2.1)

Y p
t = µY + Y p

t−1 + ut, (2.2)

Ct = Y p
t , (2.3)

where (ut , vt) is iid(0,Diag(σ2
u ,σ2

v )) and Y p
0 is fixed. Solving for permanent income, Y p

t , in

terms of Y p
0 and ui we obtain

Y p
t = Y p

0 + µY t +
t∑

i=1
ui. (2.4)

Hence, aggregate income and consumption are given by:

Yt = Y p
0 + µY t +

∑t
i=1 ui + vt ,

Ct = Y p
0 + µY t +

∑t
i=1 ui.

(2.5)

Note: Yt and Ct are nonstationary since, conditional on Y p
0 , the mean and the variance for

both variables depend on t . For example,

E[Yt |Y p
0 ] = Y p

0 + µY t, (2.6)

V[Yt |Y p
0 ] = σ2

u t + σ2
v . (2.7)

Furthermore, the following transformations of aggregate income and consumption areweakly

stationary1

∆Yt = µY + ut +∆vt, (2.8)

∆Ct = µY + ut , (2.9)

Ct − Yt = −vt . (2.10)

Here, ∆ = 1−L is the first difference operator and L is the lag operator, i.e. Lxt = xt−1. Tech-

nically, we have found that Yt, Ct are integrated of order 1 (denoted by I(1)) and cointegrated

of order (1,1) (denoted by CI(1,1)). The latter property means that a linear combination of

I(1) variables is I(0) (weakly stationary).

The term integrated comes from the observation that, e.g., Yt in (2.5) includes a compo-

nent where we sum from 1 to t (discrete integration) over a stationary variable. Since we

1 A time series is said to be weakly stationary if the first and second moments are invariant (in an absolute
sense) with respect to time.

– 2 –



sum once over this interval we say that this component is integrated of order 1. The change

in Yt includes zero such summations and is therefore integrated of order zero.

3. Vector Autoregressions

Question 1: What is a VAR system?

From equation (2.8) we have that

Ct = µY + Ct−1 + ut. (3.1)

That is, aggregate consumption is decribed by an AR(1) process. Moreover, equation (2.8)

also gives us that aggregate income is related to consumption according to

Yt = Ct + vt. (3.2)

Substituting for Ct we obtain

Yt = µY + Ct−1 + ut + vt

= µY + Ct−1 +wt.
(3.3)

Collecting (3.1) and (3.3), they can be written in vector form as


Yt

Ct


 =



µY

µY


+



0 1

0 1






Yt−1

Ct−1


+



wt

ut


 , (3.4)

or more compactly

xt = µ +Π1xt−1 + εt , (3.5)

a VAR(1) system for xt .

• εt and xt−1 are uncorrelated. A consequence of this is that εt = xt−E[xt |xt−1, xt−2, . . . ].
In other words, εt is a Wold innovation, i.e. it represent the new information in xt
relative to its history.

• The covariance matrix of εt is given by

E[εtε′t ] =



E[w2

t ] E[wtut]

E[wtut] E[u2t ]




=



σ2
u + σ2

v σ2
u

σ2
u σ2

u


 ≡ Σ,

(3.6)
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This matrix is positive definite since a′Σa > 0 for all a ∈ R2 : a ≠ 0.

• The system in (3.5) is nonstationary since the individual time series, Yt and Ct , are

nonstationary.

• The system in (3.5) is a reduced form, i.e. neither the parameters (µ,Π1,Σ) nor the

innovations εt have an economic interpretation.

Question 2: What is a structural VAR system?

Consider the VAR system

B0xt = γ + B1xt−1 + ηt , (3.7)

where ηt is iid(0,Ω) and Ω is positive definite.

Roughly, we shall say that (3.7) is a structural VAR(1) system if the parameters (γ, B0, B1,Ω)

and/or the innovations ηt can be given an economic interpretation.

Note: Combining equations (3.1) and (3.2) we get


1 −1
0 1






Yt

Ct


 =



0

µY


+



0 0

0 1






Yt−1

Ct−1


+



vt

ut


 , (3.8)

where

• ut is a shock to permanent income.

• vt is a shock to transitory income.

• ut and vt are uncorrelated (independent if the joint distribution is Gaussian).

We can examine how Y and C react to permanent and transitory income shocks by using

equation (2.5). For income we find that a one standard deviation shock at an arbitrary t in

permanent and transitory income, respectively, implies the following responses:

resp(Yt+j |ut = σu, ut+1 = . . . = ut+j = 0) = σu for all j ≥ 0,

resp(Yt+j |vt = σv, vt+1 = . . . = vt+j = 0) =



σv

0

if j = 0,

for all j ≥ 1.

while the reactions in consumption are:

resp(Ct+j |ut = σu, ut+1 = . . . = ut+j = 0) = σu for all j ≥ 0,

resp(Ct+j |vt = σv, vt+1 = . . . = vt+j = 0) = 0 for all j ≥ 0.
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These dynamic functions are called impulse response functions. Notice that permanent in-

come shocks have permanent effects on income and consumption, while transitory income

shocks only have transitory effects on income and no effect on consumption.

We can also study the relative importance of the two shocks through forecast error vari-

ance decompositions. To derive these parameters we first note that income at t + j is given

by

Yt+j = Y p
0 + µY(t + j)+

t+j∑
i=1

ui + vt+j .

Hence, the expectation of Yt+j conditional on current (t) and past values of x (and the

parameters) is

E[Yt+j |xt , xt−1, . . . ] = Y p
0 + µY(t + j)+

t∑
i=1

ui.

Accordingly, the forecast error for all j ≥ 1 is

Yt+j − E[Yt+j|xt , xt−1, . . . ] =
t+j∑
i=t+1

ui + vt+j .

The variance of this random variable is given by

V[Yt+j − E
[
Yt+j |xt , xt−1, . . .

]
] = jσ2

u + σ2
v .

The forecast error variance thus contains two parts; one part is due to permanent income

shocks while the remainder is due to transitory income shocks. The share of the total

forecast error variance explained by permanent income shocks is thus

wyp,j = jσ2
u

jσ2
u + σ2

v
,

while the share explained by transitory income shocks is

wyτ,j = σ2
v

jσ2
u + σ2

v
.

Remarks:

1. wyp,j ,wyτ,j ≥ 0 for all j ≥ 1,

2. wyp,j +wyτ,j = 1 for all j ≥ 1, and

3. limj→∞wyp,j = 1.

Similar expressions can be derived for consumption.

In summary, to analyse the dynamic behavior of a structural VAR model, impulse re-

sponse functions represent the reactions in the endogenous variables to the structural

shocks, while variance decompositions describe the relative importance of the shocks.
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4. Stability and Stationarity

Let xt ∈ Rn be a vector of random variables generated by the following Gaussian VARmodel:

xt = µ +
p∑

j=1
Πjxt−j + εt , t = 1,2, . . . , T , (4.1)

where for all t

εt ∼ iid Nn(0,Σ), (4.2)

while Σ is positive definite and x0, . . . , x1−p is fixed. The parameter p is called the lag length

(order) and is assumed to be finite.

Example: n = p = 1, i.e. an AR(1) process.

xt = µ +Π1xt−1 + εt ,

or using the lag operator

(1−Π1L)xt = µ + εt .

If |Π1| < 1, then the polynomial (1−Π1z) is invertible for all |z| ≤ 1 and the AR(1) process

is said to be stable. It now follows that

xt = (1−Π1L)−1 (µ + εt)

=
(∑∞

j=0Π
j
1Lj

)
(µ + εt)

= ∑∞
j=0Π

j
1µ +

∑∞
j=0Π

j
1εt−j

= µ/(1−Π1)+
∑∞
j=0Π

j
1εt−j .

Hence, an MA(∞) representation of xt exists since

lim
j→∞

|Π1|j = 0.

It is now easy to compute the mean of xt . This parameter is given by

E[xt] = µ
1−Π1

.

Similarly, the variance is

V[xt] = E[[
∑∞
j=0Π

j
1εt−j]

2
]

= ∑∞
j=0Π

2j
1 E[ε2t−j ]

= Σ/(1−Π2
1).
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The autocovariances can be computed similarly. Note first that

xt = µ/(1−Π1)+
∑h−1
j=0 Π

j
1εt−j +

∑∞
j=hΠ

j
1εt−j

= µ/(1−Π1)+
∑h−1
j=0 Π

j
1εt−j +

∑∞
j=0Π

j+h
1 εt−h−j .

Hence, the autocovariances for all h ≥ 1 are

C[xt, xt−h] = E
[
(
∑h−1
j=0 Π

j
1εt−j +

∑∞
j=0Π

j+h
1 εt−h−j )(

∑∞
j=0Π

j
1εt−h−j )

]

= ∑∞
j=0Π

2j+h
1 E[ε2t−h−j]

= Πh
1
∑∞
j=0Π

2j
1 Σ

= Πh
1Σ/(1−Π2

1)

= Πh
1V[xt].

Finally,

lim
h→∞

C[xt , xt−h] = 0,

since |Π1| < 1.

Conclusion 1: When xt is generated by a stable (|Π1| < 1) AR(1) process and εt is iid (0,Σ)

(we have not used the assumption of normality), then xt is also

1. weakly stationary since the first and second moments are invariant with respect to

time

2. ergodic since the dependence between xt and xt−h (in an absolute sense) declines as

the distance h increases.

Let us now examine the general case. Consider the matrix polynomial

Π(z) = In −
p∑

j=1
Πjzj ,

obtained from

Π(L)xt = µ + εt .

Question 3: Under which condition is Π(z) invertible?

Suppose the inverse exists. Then

Π(z)−1 = 1
det[Π(z)]

Adj[Π(z)].

The adjoint (cofactor) matrix of Π(z) always exists. Hence, Π(z) is invertible if and only if

the determinant is nonzero for all |z| ≤ 1.

The polynomial det[Π(z)] is of order np since Π(z) is n× n and of order p.
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Example: Suppose n = 2. Then

Π(z) =



Π11(z) Π12(z)

Π21(z) Π22(z)


 .

Hence, the determinant is given by

det[Π(z)] = Π11(z)Π22(z)−Π21(z)Π12(z).

Now,

Πij(z) =




1−∑p
k=1Πii,kzk if j = i,

−∑p
k=1Πij,kzk otherwise.

Hence, for the bivariate case

det[Π(z)] =
(
1−∑p

k=1Π11,kzk
) (

1−∑p
k=1Π22,kzk

)

−
(∑p

k=1Π21,kzk
)(∑p

k=1Π12,kzk
)

= 1−∑2p
k=1φkzk

= ∏2p
i=1 (1− λiz) .

The parameters φk are determined directly from Πij,k. For instance, φ1 = Π11,1 + Π22,1,

whereas φ2 = Π11,2 +Π22,2 + Π21,1Π12,1 −Π11,1Π22,1. The third equality above determines

the λi ’s from the φk’s. Notice that while φk is a real number and unique, λi is a complex

number and typically not unique. That is, we need to use some ordering rule before the λi ’s

can be uniquely determined.

Conclusion 2: Let det[Π(z)] = ∏np
i=1(1 − λiz), where |λnp| ≥ |λnp−1| ≥ . . . ≥ |λ1| ≥ 0.

Then Π(z) is invertible if and only if |λnp| < 1.

Let |λi| denote the modulus of λi Suppose, that λ1 = .5+ .6ı, λ2 = .5− .6ı, where ı = √−1.
Then

|λ1| =
√
.52 + .62 = .7810 = |λ2|.

An equivalent condition for invertibility is that det[Π(z)] = 0 if and only if |z| > 1. The

z’s which imply that the determinant is zero are called roots, and this condition states that
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all roots must lie outside the unit circle. The λi ’s are eigenvalues of the matrix:

Π =




Π1 Π2 · · · Πp−1 Πp

In 0 · · · 0 0

0 In 0 0

...
. . .

...

0 0 · · · In 0




.

This matrix is found when we rewrite the VAR(p) system into a VAR(1) system for Xt =
(xt , xt−1, . . . , xt−p+1), an np × 1 vector. In the AR(1) case, Π = Π1 = λ1 and the invertibility

(stability) condition was found to be |Π1| < 1.

The results in Conclusion 1 thus also hold when np > 1. That is, if xt is a stable VAR(p)

process, then xt is weakly stationary and ergodic.

5. Identification and Structural Models

Consider the model

B0xt = γ +
p∑

j=1
Bjxt−j + ηt , t = 1,2, . . . , T , (5.1)

where

ηt ∼ iid Nn(0,Ω), (5.2)

Ω is positive definite, while x0, . . . , x1−p are fixed.

If B0 is invertible, then (5.1) can be written as

xt = B−10 γ +∑p
j=1 B

−1
0 Bjxt−j + B−10 ηt

= µ +∑p
j=1Πjxt−j + εt ,

(5.3)

where

εt ∼ iid Nn(0,Σ), (5.4)

with Σ = B−10 Ω(B′0)−1 being positive definite since Ω is positive definite and B0 invertible.

Question 4: Can we identify (uniquely determine) the parameters (γ, B0, B1, . . . , Bp,Ω) from

(µ,Π1, . . . ,Πp,Σ)?

The general answer is, of course, no. This follows directly from the observation that there

are n2 additional parameters in (5.1) relative to (5.3). Accordingly, if the parameters in (5.3)

are uniquely determined (from the distribution for xt ), then to achieve identification of the
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parameters in (5.1) it is necessary (but generally not sufficient) to impose n2 restrictions

(identifying assumptions) on its parameters.

Although uniqueness is often at the heart of what econometricians tend to mean by a

structural model, there is no unique definition as to what a structural model is. Let F(x;θ)

be a distribution function for x which depends on a vector of parameters, θ.

Definition 1 (statistics): A structural model for x is given by a function F(x;θ) such that θ

is uniquely determined from the probability distribution for x.

Question 5: Is the VAR model in (5.3) a structural model according to this definition?

The answer is yes. (µ,Π1, . . . ,Πp,Σ) is uniquely determined from the first and second

moments for xt . For example, in the case when p is equal to one and the mean of x is zero

we have that

µ = 0

Π1 = E[xtx′t−1]E[xt−1x
′
t−1]

−1

Σ = E[xtx′t ]+Π1E[xt−1x′t−1]Π
′
1 − E[xtx′t−1]Π

′
1 −Π1E[xt−1x′t ].

Hence, the VAR parameters are uniquely determined from the population moments of x.

Question 6: Is the VAR model in (5.1) a structural model according to definition 1?

Since (γ, B0, B1, . . . , Bp,Ω) is not uniquely determined from (µ,Π1, . . . ,Πp,Σ), the answer

must be no. However, once the parameters of (5.1) are uniquely determined, they are indeed

structural in this sense.

An alternative notion of what a structure (or structural model) is, comes from David

Hendry. My understanding of what he means by a structure in time series econometrics is

the following:

Definition 2 (“Hendry”): A structure is a set of features of the data that remain constant

over time, e.g. properties which do not vary across different policy regimes.

An analogy would be a classroom, where the room is a structure whereas the chairs, tables,

students and teachers are not. While this definition has certain appeals from a practical

(empirical) point of view, it is of limited theoretical interest since parameters are usually

considered constant. In other words, the models in (5.1) and in (5.3) are both structures in

Hendry’s sense since the parameters are taken to be constant. Moreover, as with Definition

1, there is basically no economics in Hendry’s idea of what a structure is.

Definition 3 (“Cowles Commission”): A structure is a specific set of relationships between

(random) variables x and parameters θ, where the latter can be given an economic interpre-

tation.
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The variables x can here include endogenous as well as exogenous variables, while the

parameters are taken to be constant (over time or cross sections).

What is important in this definition is that “the parameters” have an economic meaning

(that the variables have an economic meaning is implicitly assumed). But this doesn’t mean

that any transformation of the parameters, e.g. φ = f (θ) for a particular function f (·), can
be given an economic interpretation. Note also, that this definition does not say that θ

satisfies Definition 1. In other words, the structural parameters need not be identified!

Definition 4 (“Sims”): A structural model is a representation of (x, θ) that can be used in

decision making, i.e. it generates predictions about the results of different actions.

This definition indicates that a structural model should be useful for, e.g., policy analy-

sis. In that sense, it is similar to Hendry’s idea of a structure. Moreover, Sims’s definition

suggests that θ is identified, i.e. it satisfies the statistical notion of a structural model. Fi-

nally, in order for the results of the actions to be meaningful to an economists, θ must have

an economic interpretation. Hence, Sims’s definition seems to incorporate all the above

notions of what a structural model is. Moreover, it suggests that (5.1) can be a structural

model whereas (5.3) cannot.2

Definition 5 (“Wold”): Economic structures (causal relations) are recursive.

This definition presumes a time series perspective. It states that a variable x1 can be

causal for x2 if x1 occurs (is realized) before x2. However, in practise the sampling frequency

of macroeconomic time series is typically (much) lower than the frequency between causal

events, thus making use of this definition somewhat doubtful.

The early structural VAR analyses, e.g. Sims (1980), are based on so called Wold causal

chains with independent innovations (shocks). An economic interpretation is given to the

shocks (the actions, e.g. a monetary policy shock) and to the dynamic responses in the

endogenous variables (impulse response functions and variance decompositions).

To show that Wold causal chains are exactly identifying, note first that

1. B0 is lower triangular (recursive) yields n(n − 1)/2 restrictions.

2. Ω is diagonal (mutually independent innovations) yields n(n− 1)/2 restrictions.

This gives us a total of n(n−1) identifying restrictions. To exactly identify the parameters of

(5.1) we need at least n additional restrictions. These are given by either letting all the diag-

onal elements of B0 or of Ω be equal to unity. For impulse responses functions and variance

decompositions, these two choices of the n normalizing assumptions are equivalent.

Consider first the case where Ω = In. Then Σ = B−10 (B′0)−1. Since B0 is lower triangular,

its inverse is also lower triangular. Let P denote the inverse of B0. With Σ = PP ′ the matrix

2 This statement assumes that “actions” have an economic meaning.
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P is called the Choleski factor of Σ and it can be shown that P is uniquely determined up to

an orthogonal transformation N such that N is diagonal with diagonal elements equal to 1

or −1. That is, P∗ = PN is also lower triangular and satisfies Σ = P∗P∗′. In plain english

this means that each structural shock is identified up to its sign!

Example: Consider the bivariate case.

σ11 σ12

σ12 σ22


 =



p11 0

p21 p22






p11 p21

0 p22




=




p211 p11p21

p11p21 p222 + p221


 .

Solving for the pij ’s we obtain

p11 = √σ11
p21 = σ12/

√
σ11

p22 =
√
σ22 − (σ2

12/σ11).

Notice that all pij ’s are real numbers since Σ is assumed to be positive definite. Moreover,

we have chosen the orthogonal matrix N = I2.

Consider now the case when we choose to impose the n normalizing assumptions on the

diagonal of B0. In the n = 2 case we have that

Σ = B−10 Ω(B′0)−1

=




1 0

−β21 1



−1 

ω11 0

0 ω22






1 −β21
0 1



−1

=




1 0

β21 1






ω11 0

0 ω22






1 β21

0 1




=




ω11 ω11β21

ω11β21 ω22 + β221ω11


 .

Solving for the structural parameters we obtain

ω11 = σ11,

β21 = σ21/σ11,

ω22 = σ22 − σ2
21/σ11.
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Here we find that ωii > 0 since Σ is positive definite, while the sign of β21 depends on the

sign of the covariance between the two residuals in the reduced form VAR.

Alternatively, suppose B0 and Ω are given by

B0 =



1 −β12
0 1


 Ω =



ω11 0

0 ω22


 .

In this case


σ11 σ12

σ12 σ22


 =



1 −β12
0 1



−1 

ω11 0

0 ω22







1 0

−β12 1



−1

=



1 β12

0 1






ω11 0

0 ω22







1 0

β12 1




=



ω11 + β212ω22 β12ω22

β12ω22 ω22


 .

Solving for β12,ω11,ω22 we obtain

ω22 = σ22

β12 = σ12/σ22

ω11 = σ11 − σ2
12/σ22.

All these choices of B0,Ω are observationally equivalent . The first and the second structural

models are equivalent up to a choice of normalization, while the third has very different

implications for the behavior of x except when σ12 = 0.

As long as we choose to identify B0 andΩ from the covariance matrix Σ, all structures will

be related to the Choleski decomposition of Σ. For instance, suppose Ω = In. Then there

exists an infinite number of orthogonal matrices N such that B0 = (PN)−1. In the bivariate

case, one such orthogonal matrix is:

N = 1√
2



1 −1
1 1


 .

Since NN′ = I2 it follows that PNN′P ′ = PP ′ = Σ. However, the matrix B0 (for P lower

triangular) is now given by

B0 = 1√
2p11p22




p22 − p21 p11

−(p22 + p21) p11


 .
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Hence, we no longer have a recursive structure!

Example: PIH revisited. Remember that the VAR(1) system for Yt and Ct can be written as


Ct

Yt


 =



µY

µY


+



1 0

1 0






Ct−1

Yt−1


+



ut

wt


 , (5.5)

where wt = ut + vt , while

Σ =



σ2
u σ2

u

σ2
u σ2

u + σ2
v


 . (5.6)

Similarly, the true structural VAR system is given by


1 0

−1 1






Ct

Yt


 =



µY

0


+



1 0

0 0






Ct−1

Yt−1


+



ut

vt


 , (5.7)

where

• ut is a permanent income shock, and

• vt is a transitory income shock.

Question 7: Given (5.5) and (5.6), can we derive (5.7) from Σ = B−10 Ω(B′0)−1 withΩ diagonal

and B0 lower triangular with unit diagonal elements?

Under these conditions we obtain

σ2
u σ2

u

σ2
u σ2

u + σ2
u


 =




ω11 β21ω11

β21ω11 ω22 + β221ω11


 .

Accordingly,

ω11 = σ2
u

β21 = 1

ω22 = σ2
v .

and

B0 =



1 0

−1 1


 , Ω =



σ2
u 0

0 σ2
v


 .

Premultiplying both sides of (5.5) by B0 we indeed obtain (5.7).
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Now, suppose we change the ordering of the variables while

B0 =




1 0

−β21 1


 , Ω =



ω11 0

0 ω22


 .

Do the resulting “structural shocks” have an economic meaning?

Under the new assumptions we have that


σ2
u + σ2

v σ2
u

σ2
u σ2

u


 =




ω11 β21ω11

β21ω11 ω22 + β221ω11


 .

Solving these 3 equations for β21,ω11,ω22 we get

ω11 = σ2
u + σ2

v

β21 = σ2
u /(σ

2
u + σ2

v )

ω22 = σ2
u − σ4

u /(σ
2
u + σ2

v ).

Notice that ωii > 0 (as they should be) and that 0 < β21 < 1. Moreover, the resulting

structural VAR system is now given by



1 0

−β21 1






Yt

Ct


 =




µY

(1− β21)µY


+



0 1

0 1− β21






Yt−1

Ct−1


+




ut + vt

(1− β21)ut − β21vt


 .

Hence, the first “structural shock” is the sum of the permanent and the transitory income

shock, while the second is another linear combination of the true structural shocks.

The last case illustrates the Cooley and LeRoy (1985) critique against arbitrary orderings

of the variables when the identifying assumptions are based on Wold causal chains. If the

identifying assumptions do not rely on a particular economic theory, the resulting “struc-

tural shocks” can be pure nonsense shocks. Note, however, that this second example is not

empirically irrelevant. In fact, models of consumption have a long tradition of using these

identifying assumption; see e.g. Davidson, Hendry, Srba, and Yeo (1978). To be fair, the

context where it has been used is very different from that of structural VAR’s.

If we interpret the second equation in the above structural VAR model as a consumption

function we find after a bit of algebra that it can be written as

∆Ct = (1− β21)µY + β21∆Yt − β21(Ct−1 − Yt−1)+ψt, (5.8)

whereψt = (1−β21)ut−β21vt . We have already noted that 0 < β21 < 1 and that income and

consumption are CI(1,1) with (Ct−Yt) being a cointegration relation. The relationship in (5.8)
is consistent with a Keynesian consumption function in the empirical modelling tradition

of the so called LSE school (Sargan, Hendry, etc.). The cointegration relationship would then
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have the interpretation of a long run consumption rule (or function). The true values of the

parameters suggest that, ceteris paribus, an increase in current income by 1 percent leads

to an increase in current consumption by less than 1 percent, while consumption over the

long run level in the previous period (Ct−1 > Yt−1) leads to a partial decrease in current

consumption.

The assumption which is critical here is that ∆Yt and ψt are uncorrelated. In terms of

the Wold causal chain this means that income is predetermined, i.e. current income does

not depend on current consumption.

To choose between the PIH and the Keynesian consumption function we may turn to

examining overidentifying assumptions. In our example, the PIH implies that consumption

is a random walk (with drift) and is thus consistent with the Hall (1978) version of this

hypothesis. In terms of the VAR in (5.3) this implies 2 restrictions on Π1. Once we have

established that the data is consistent with these restrictions and we choose to use these

restrictions in our analysis, the consumption function in (5.8) is no longer an interesting

competing theory.

To sum up, we have shown that two sets of identifying assumptions can yield results

which makes sense to an economist. The data will not help us choose between these two

structures and we can always find an economists who will argue in favor of one of these

theories over the other. Still, when we attempt to identify a structural model, economic

theory is, in my opinion, the best guide available to us. If competing theories provide

restrictions on the parameters of the reduced form VAR, these may help us choose which

theory is consistent with the data.

6. Impulse Response Functions and Variance Decompositions

The notion that a set of impulses and a propagation mechanism are useful tools when

analysing an economy goes back to Frisch (1933) and Slutzky (1937).

Impulse response analysis addresses the question:

Question 8: How does x react (over time) to a change in one of the shocks?

Suppose that our VAR(p) model is stable so that xt is weakly stationary. The resulting

VMA representation of the VAR is then

xt = Π(L)−1(µ + εt)

= Π(1)−1µ +Π(L)−1εt
= δ+ C(L)εt ,

(6.1)
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where

C(z) = In +
∞∑
i=1

Cizi.

The structural shocks, ηt , are related to the VAR innovations, εt , according to

ηt = B0εt . (6.2)

Hence, we can rewrite the VMA representation as

xt = δ+ C(L)B−10 B0εt

= δ+ R(L)ηt,
(6.3)

where

R(z) =
∞∑
i=0

Rizi, (6.4)

with

Ri =



B−10 if i = 0,

CiB−10 otherwise.

Example: Let

I2 =



1 0

0 1


 =

[
e1 e2

]
Ω1/2 =



√ω11 0

0
√
ω22


 .

Consider the following experiment

ηt =



Ω1/2ej if t = t∗,

0 if t > t∗.
(6.5)

Notice that Ω1/2ej = ej
√ωjj measures a one standard deviation increase in the j :th struc-

tural shock (while the other shock is zero).

Question 9: What are the responses in xt∗ , xt∗+1, . . . (relative to ηt∗+j = 0 for all j ≥ 0)

from such a shock?
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Using the structural VMA represenation in (6.3) we find that the impulse response function

is:

resp(xt∗|ηt∗ = ej
√ωjj) = R0ej

√ωjj,

resp(xt∗+1|ηt∗ = ej
√ωjj) = R1ej

√ωjj,
...

resp(xt∗+i|ηt∗ = ej
√ωjj) = Riej

√ωjj.

(6.6)

The vector Riej is the j :th column of Ri. In the limit we have that

lim
i→∞

resp(xt∗+i|ηt∗ = ej
√
ωjj) = 0,

for all j ∈ {1,2} since xt is ergodic. In other words, for weakly stationary VAR(p) models,

the response in x from any shock vanishes in the long run. Hence, we can say that xt is

mean reverting.

Question 10: Is the experiment in equation (6.5) relevant from a statistical point of view?

Shocks at t∗ and t ∗ +i are independent and, moreover, different structural shocks are

independent. Thus, the experiment is consistent with the assumptions about ηt .

Question 11: Is the experiment in equation (6.5) relevant from an economics point of view?

If the shocks can be given a credible economic interpretation, the answer would be yes.

However, there is no guarantee that the responses in x will be fully consistent with the

economic model which the identification of the shocks is based on. This can occur when the

economic model implies overidentifying restrictions on the parameters of the VAR model

and these restrictions are not consistent with the data.

An important assumption in structural VAR modelling is that the structural shocks are

linear combinations of the residuals in the reduced form VAR model (the so called Wold in-

novations). To illustrate the relevance of this assumption, consider the following univariate

process

ηt = αηt−1 +ψt −α−1ψt−1, (6.7)

where |α| < 1 and ψt ∼ iid N(0, σ2
ψ). This looks like an ordinary ARMA(1,1) model, where

the AR polynomial is invertible while the MA polynomial is not. Also, the MA coefficient is

equal to the inverse of the AR coefficient. The polynomial (1 − α−1z)/(1 − αz) is called a

Blaschke factor.
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Since the AR polynomial is invertible, it follows that ηt is weakly stationary and that its

mean is zero. Moreover, the variance is given by

E[η2t ] = E[α2η2t−1 +ψ2
t +α−2η2t−1 + 2αηt−1ψt − 2ηt−1ψt−1 − 2α−1ψtψt−1]

= α2E[η2t−1]+ σ2
ψ +α−2σ2

ψ − 2σ2
ψ.

With σ2
η = E[η2t ] we then obtain

σ2
η =

(α−2 − 1)σ2
ψ

1−α2 . (6.8)

Similarly, the first autocovariance is given by

E[ηtηt−1] = E[αη2t−1 +ψtηt−1 −α−1ψt−1ηt−1]

= ασ2
η −α−1σ2

ψ

= [α(α−2 − 1)σ2
ψ −α−1(1−α2)σ2

ψ]/(1−α2)

= 0.

Finally, it can be shown that for all h ≥ 2

E[ηtηt−h] = αE[ηt−1ηt−h] = 0.

Accordingly, the parameters α,σ2
ψ cannot be uniquely determined from the distribution for

η since this random variable is not serially correlated. Still, for any pair (α,σ2
ψ) consistent

with the population variance of η, there is a dynamic reaction in η from a shock to ψ. For

instance, consider the experiment

ψt =



σψ if t = t∗,

0 if t > t∗.

The response in ηt∗ is then given by

resp(ηt∗|ψt∗ = σψ) = σψ,

while for i ≥ 1 we obtain

resp(ηt∗+i|ψt∗ = σψ) = αi−1(α−α−1)σψ ≠ 0.

The impulse response function for x from an experiment where ηt is equal to ση at t = t∗

and 0 for t > t∗ is very different from the impulse response function for x when (for some

α ≠ 0) we consider an experiment based on ψ. This means that the impulse responses are

not uniquely determined unless we are willing to either choose a particular value for α, or

assume that the structural shocks are linear combinations of the Wold innovations.
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Question 12: Should we worry about Blaschke factors?

According to Lippi and Reichlin (1993), modern macroeconomic models which are lin-

earized into dynamic systems tend to include noninvertible MA components. While this is

certainly a problem from the point of view of estimating a multivariate ARMA model, we

should keep in mind that noninvertibility of an MA term does not mean that there exists

an AR factor whose coefficient is the inverse of the MA coefficient in question. Still, it em-

phasizes the point made earlier that sound structural VAR analysis should rest on a firm

theoretical basis.

A variance decomposition, or innovation accounting, measures the share of the forecast

error variance which is accounted for by a particular shock. Hence, variance decompositions

address the question:

Question 13: How important is a particular shock (relative to all the other shocks) for

explaining the fluctuations in x?

To construct the forecast error variance, from (6.3) we have for all h ≥ 1 that

xt+h = δ+
∞∑
k=0

Rkηt+h−k.

The optimal prediction of xt+h given all information available at period t is the conditional

expectation.3 Hence,

E[xt+h|xt , xt−1, . . . ] = δ+
∞∑
k=h

Rkηt+h−k. (6.9)

The forecast error is therefore

ϕt+h|t =
h−1∑
k=0

Rkηt+h−k, (6.10)

a VMA process of order (h− 1). Consequently, the forecast error covariance matrix for x is

Vh = E[ϕt+h|tϕ′
t+h|t ] =

h−1∑
k=0

RkΩR′k. (6.11)

Notice that this covariance matrix is invariant to the choice of identification, i.e. Vh =∑h−1
k=0 CkΣC′k.

For a particular variable i ∈ {1, . . . , n} the h steps ahead forecast error variance is given

by the i:th diagonal element of Vh. With ei being the i:th column of In this variance can be

written as

vi,h = e′iVhei =
h−1∑
k=0

e′iRkΩR
′
kei. (6.12)

3 By optimal we mean that it has the smallest mean square error among all unbiased predictors.
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Let Rij,k denote the (i, j):th element of Rk. It then follows that

e′iRkΩR
′
kei =

[
Ri1,k · · · Rin,k

]



ω11 0

. . .

0 ωnn







Ri1,k
...

Rin,k




= ∑n
j=1 R2

ij,kωjj .

Hence, equation (6.12) can be rewritten as

vi,h =
h−1∑
k=0

n∑
j=1

R2
ij,kωjj . (6.13)

Multiplying both sides by 1/vi,h we thus obtain

1 = ∑h−1
k=0

∑n
j=1R2

ij,kωjj/vi,h

= ∑n
j=1

(∑h−1
k=0 R2

ij,kωjj/vi,h
)

= ∑n
j=1wij,h.

(6.14)

The parameter wij,h takes values in the unit interval and measures the fraction of the h

steps ahead forecast error variance for variable i which is accounted for by shock j .

Example: Suppose n = 2 with Ω diagonal and B0 lower triangular with unit diagonal ele-

ments. With R0 = B−10 the 1 step ahead forecast error variance is

V1 = R0ΩR′0

=




1 0

β21 1






ω11 0

0 ω22






1 β21

0 1




=




ω11 β21ω11

β21ω11 ω22 + β221ω11


 .

The 1 step ahead forecast error variances are thus

variable 1: ω11 = σ11

variable 2: ω22 + β221ω11 = σ22.
(6.15)

Hence, the 1 step ahead forecast error variance for each variable is invariant with respect to

the choice of identification. The variance decompositions, however, are not invariant. For

1 step ahead forecast errors, the share of the total variance for the first variable which is

explained by the first (second) shock is unity (zero). For the second variable, the share due
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to the first shock is β221ω11/σ22 while the share due to the second shock is ω22/σ22. if we

instead assume that the B0 matrix is upper triangular (with unit diagonal elements), for the

second variable variable we find that the share of the 1 step ahead forecast error variance

due to the second (first) shock is unity (zero). Moreover, for the first variable both shocks

may now account for the error variance.

7. Cointegration and Common Trends

It has long been recognized that many macroeconomic time series are trending and thus

not well described as weakly stationary. To transform the data into appropriate stationary

series various detrending techniques have been considered. Common among these are the

linear trend model and the first difference model.

Example: PIH revisited. From equation (2.5) we find that both variables have a linear trend

when µY ≠ 0. However, removal of this trend does not make the variables stationary since

they also include a stochastic trend,
∑t
i=1 ui . Hence, the linear trend model is not appropri-

ate for rendering nonstationary variables stationary in this model.

By taking first differences, we know from equations (2.8) that these transformations make

income and consumption stationary. Still, there does not exist a VAR model with finite lag

order for the first differences. In fact, if we subtract Ct−1 from the consumption equation

of (3.4) we have that

∆Ct = µY + ut , (7.1)

while subtracting Yt−1 from the income equation of produces

∆Yt = µY + Ct−1 − Yt−1 +wt. (7.2)

In vector form we thus have that

∆Ct

∆Yt


 =



0 0

1 −1






Ct−1

Yt−1


+



ut

wt


 . (7.3)

Hence, once the left hand side variables have been transformed into first differences, the

levels of lagged income and consumption still appears on the right hand side of the model.

Moreover, the matrix of coefficients on the lagged levels has reduced rank (lower rank than
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dimension). Specifically,

Π =



0 0

1 −1




=



0

1



[
1 −1

]

= αβ′

where the vectors α,β have rank 1. Finally, the product Πxt−1 yields

Πxt−1 =



0

1



[
1 −1

]


Ct−1

Yt−1




=



0

1


 (Ct−1 − Yt−1) .

Hence, the product produces a vector of weights α on the cointegration relation between

consumption and income. VAR models in first differences do not take this relation into

account and are therefore misspecified.

An alternative way of deriving an appropriate transformation of the variables in the VAR

model is to calculate the number of unit roots. If this number is lower than the dimension

of the VAR, then a VAR model in first differences will be overdifferenced. In the PIH case

we have that

Π(z) =



1− z 0

−z 1


 . (7.4)

This matrix polynomial has exactly 1 unit root and no roots inside the unit circle. Hence,

the number of variables (2) exceeds the number of unit roots.

To generalize these observations, consider again the VAR(1) model for xt in (3.5). Sub-

tracting xt−1 from both sides we obtain

∆xt = µ +Π1xt−1 − xt−1 + εt

= µ + (Π1 − In) xt−1 + εt

= µ +Πxt−1 + εt ,

(7.5)

where Π = −(In +Π1) = −Π(1) (in terms of the polynomial Π(z) = In −Π1z).
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To ensure that xt is I(d) with the integer d ≥ 0, we shall assume that det[Π(z)] = 0 if and

only if |z| > 1 or z = 1. In other words, there are neither explosive (|z| < 1) nor seasonal

(z = −1) roots.

1. If rank[Π] = n, then there are no unit roots so xt is weakly stationary.

2. If rank[Π] = 0, then Π(z) = (In − Inz). Accordingly, ∆xt = µ + εt and xt is I(1) but not

cointegrated.

3. If rank[Π] = r with r ∈ {1, . . . , n − 1} and the number of unit roots is equal to n − r ,

then xt is CI(1,1) with Π = αβ′ and β′xt being I(0).

While the first two cases are not too difficult to understand, the third case is far from

obvious. Specifically, what is the importance of the condition that “ . . . the number of unit

roots is equal to n − r . . . ”?

Example: Consider a bivariate VAR(1) model where


x1,t

x2,t


 =



2 −1
1 0






x1,t−1

x2,t−1


+



ε1,t

ε2,t


 . (7.6)

For this model we have that

Π(z) =



1− 2z z

−z 1


 .

Accordingly, det[Π(z)] = 1− 2z + z2 = (1− z)2. Hence, there are 2 unit roots. At the same

time,

Π =



1 −1
1 −1


 ,

has rank 1. Hence, the number of unit roots is greater than n− r = 1. In this case, xt is still

integrated but not I(1).
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If we subtract xt−1 from both sides of equation (7.6) we get


∆x1,t

∆x2,t


 =



1 −1
1 −1






x1,t−1

x2,t−1


+



ε1,t

ε2,t




=



1

1



[
1 −1

]


x1,t−1

x2,t−1


+



ε1,t

ε2,t




=



1

1



(
x1,t−1 − x2,t−1

)+


ε1,t

ε2,t


 .

(7.7)

From this equation it can be seen that (x1,t − x2,t ) is integrated of an order less than x1,t
and x2,t . Subtracting ∆x2,t from ∆x1,t we obtain

∆x1,t −∆x2,t = ∆
(
x1,t − x2,t

)

= ε1,t − ε2,t .
(7.8)

In other words, (x1,t − x2,t ) is I(1) and we must therefore have that xt is I(2).

Hence, this example illustrates that the condition “ . . . the number of unit roots is equal

to (n− r) . . . ” rules out the cases when xt is I(d) with d ≥ 2.

In the PIH case, the number of unit roots is exactly equal to (n− r) and thus satisfies the

conditions in case (3) above.

Returning to the VAR(1) model in (7.5), we can express the matrix Π as

Π = αβ′, (7.9)

where α,β are n× r matrices with full column rank. The error correction representation of

the model can now be expressed as

∆xt = µ +αβ′xt−1 + εt . (7.10)

When Π has reduced rank and the number of unit roots equals the rank reduction (n − r),

then xt is CI(1,1) with β′xt being the r cointegration relations.4

Note that the parameters (α,β) are not uniquely determined. For any r × r nonsingular

matrix ξ we have that β∗′xt = ξβ′xt is also I(0). With α∗ = αξ−1 it follows that Π = α∗β∗′.

In other words, the cointegration space, sp(β), is uniquely determined fromΠ, but the basis

is not.

In the PIH example, we have that (Ct − Yt) is I(0), but so is a(Ct − Yt) for any finite a ≠ 0.

4 In the VAR(1) model, the coindition that the number of unit roots is equal to the rank reduction is equivalent
to rank[α′β] = r . In the I(2) example, for instance, we have that α′β = 0; for parametric conditions for xt to
be I(1) in the VAR(p) model, see Johansen (1991).
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Question 14: How do we invert VAR models with unit roots?

Example: For the PIH, the VAR model with a cointegration constraint is given in (7.3). With

(Ct − Yt) = −vt the income growth equation can be written

∆Yt = µY +wt − vt−1

= µY +wt + ut−1 − (ut−1 + vt−1)

= µY +wt + ut−1 −wt−1.

The MA representation for consumption and income growth is then


∆Ct

∆Yt


 =



µY

µY


+



1 0

0 1






ut

wt


+



0 0

1 −1






ut−1

wt−1


 , (7.11)

or

∆xt = δ+ (I2 + C1L) εt . (7.12)

In this case, the inverted error correction model is an MA(1) process for the first differences.

As we shall see below, the MA representation for ∆xt is usually of infinite order.

Notice also that C(z) = I2 + C1z is not invertible. Specifically,

det[C(z)] = 1− z.

This is, of course, just the other side of the coin of the fact that there does not exist a finite

order VAR model for the first differences.

The result that C(z) has a unit root, means that C = C(1) has reduced rank. In particular,

C =



1 0

1 0


 . (7.13)

Notice that C is orthogonal to α and β. Specifically, β′C = 0 and Cα = 0. Moreover,

C(z)− C =



1 0

z 1− z


−



1 0

1 0




=




0 0

z − 1 1− z




= (1− z)



0 0

−1 1


 .

(7.14)
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Hence, although C(z) itself does not have a common factor, (1 − z), its deviation from C

does. We can therefore express the C(z) polynomial as

C(z) = C + (1− z)C∗. (7.15)

Substituting for C(z) in equation (7.11) we have that

xt = xt−1 + δ+ Cεt + C∗(εt − εt−1)

= [xt−2 + δ+ Cεt−1 + C∗(εt−1 − εt−2)]+ δ+ Cεt + C∗(εt − εt−1)

= xt−2 + δ2+ C(εt + εt−1)+ C∗(εt − εt−2)

= x0 − C∗ε0 + δt + C
∑t
i=1 εi + C∗εt .

(7.16)

We have thus found that the “conditional” MA representation for consumption and income

contains (i) an I(1) component (δt +C
∑t
i=1 εi); (ii) an I(0) component (C∗εt); and (iii) initial

values (x0 − C∗ε0). The fact that the MA representation includes the third component is

reason why I call it a conditional representation.

The I(1) component of the conditional MA representation can also be expressed as

xpt =



µY

µY


 t +



1 0

1 0


∑t

i=1



ui

wi




=



1

1



(
µY t +

∑t
i=1 ui

)

=



1

1



[
1 0

]


µY

µY


 t +



1

1



[
1 0

]∑t
i=1



ui

wi




= β⊥α′⊥µt + β⊥α′⊥
∑t
i=1 εi.

(7.17)

Here, α′⊥α = 0 and β′⊥β = 0. From equation (7.17) it can be seen that income and consump-

tion have 1 common trend. This trend can be represented by α′⊥(µt +
∑t
i=1 εi). Moreover,

we find that β′xpt = 0 since β′xt is I(0) and cannot include the I(1) component in xt . Hence,

the cointegration vector acts as a detrending model.

To generalize these results to the VAR(1) model, note first that equation (7.10) can be

rewritten as

xt = µ + (In +αβ′
)
xt−1 + εt . (7.18)
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Premultiplying this system by β′ yields

β′xt = β′µ + β′ (In +αβ′) xt−1 + β′εt

= β′µ + (Ir + β′α)β′xt−1 + β′εt ,
(7.19)

a VAR(1) model for the cointegration relations. Solving this model recursively we obtain

β′xt = ∑∞
i=0 (Ir + β′α)iβ′µ +∑∞i=0 (Ir + β′α)iβ′εt−i

= −(β′α)−1β′µ +∑∞i=0 (Ir + β′α)iβ′εt−i ,
(7.20)

an MA(∞) representation for the r cointegration relations. Notice that if rank(β′α) < r , then

the polynomial (Ir − (Ir + β′α)z) contains a unit root. This is ruled out by the assumption

that the number of unit roots equals (n− r).5

Substituting equation (7.20) for β′xt−1 in (7.10) we have found the MA representation for

∆xt . Specifically, it is given by

∆xt =
(
In −α(β′α)−1β′

)
µ + εt +

∑∞
i=1α(Ir + β′α)(i−1)β′εt−i

= δ+∑∞i=0 Ciεt−i ,
(7.21)

where C0 = In.

To show that C(z) has unit roots, note first that

C = In +
∑∞
i=1α(Ir + β′α)(i−1)β′

= In −α(β′α)−1β′.
(7.22)

Second, for any α⊥, β⊥ ∈ Rn×(n−r) of rank (n − r) such that α′⊥α = 0 and β′⊥β = 0 it holds

that

In = β⊥
(
α′⊥β⊥

)−1α′⊥ +α
(
β′α

)−1β′. (7.23)

This can be verified through premultiplication of both sides by α′⊥ or β′ or through post-

multiplication by α or β⊥. The choice of basis for α⊥ and β⊥ is irrelevant since α∗⊥ = α⊥ζ,

β∗⊥ = β⊥ξ (where ζ and ξ are nonsingular (n − r)× (n − r) matrices) satisfy

β∗⊥
(
α∗′⊥ β∗⊥

)−1α∗′⊥ = β⊥
(
α′⊥β⊥

)−1α′⊥.
Using equation (7.23) we thus have that

C = β⊥
(
α′⊥β⊥

)−1α′⊥, (7.24)

5 When β′α has full rank r (explosive roots have already been ruled out by assumption), it follows that∑∞
i=0(Ir +β′α)i = (Ir − (Ir +β′α))−1, i.e. the matrix (Ir +β′α) has all eigenvalues inside the unit circle so that

the sum of the exponents from zero to s converges to a finite matrix as s becomes very large.
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in the VAR(1) model.6 Accordingly, we find that

rank[C] = n− r , (7.25)

and C(z) thus has r unit units.

To show that C(z) corrected for C has a common unit root, we use brute force. That is

C(z)− C = ∑∞
i=1 Cizi −

∑∞
i=1 Ci

= −(1− z)
[∑∞

i=1Ci
]− [∑∞i=1 Ci]z +∑∞i=1 Cizi

= −(1− z)
[∑∞

i=1Ci
]− [∑∞i=1 Ci]z + C1z +

∑∞
i=2 Cizi

= −(1− z)
[∑∞

i=1Ci
]− [∑∞i=2 Ci]z +∑∞i=2 Cizi

= −(1− z)
[∑∞

i=1Ci
]− (1− z)

[∑∞
i=2Ci

]
z − [∑∞i=2 Ci] z2

+∑∞i=2 Cizi
= −(1− z)

[∑∞
i=1Ci

]− (1− z)
[∑∞

i=2Ci
]
z − [∑∞i=2 Ci] z2

+C2z2 +
∑∞
i=3Cizi

= −(1− z)
[∑∞

i=1Ci
]− (1− z)

[∑∞
i=2Ci

]
z − [∑∞i=3 Ci] z2

+∑∞i=3 Cizi
= −(1− z)

[∑∞
i=1Ci

]− (1− z)
[∑∞

i=2Ci
]
z − (1− z)

[∑∞
i=3 Ci

]
z2

− [∑∞i=3 Ci] z3 +∑∞i=3 Cizi
= (1− z)

∑k
j=0

[
−∑∞i=j+1 Ci

]
zj − [∑∞i=k+1 Ci]zk +∑∞i=k+1 Cizi.

(7.26)

The last two terms on the right hand side of the last equality vanish as k becomes very large,

while the first term converges when the Ci matrices satisfy a summability condition. In that

case, we obtain

C(z)− C = (1− z)
∞∑
j=0

C∗j z
j , C∗j = −

∞∑
i=j+1

Ci, j = 0,1, . . . . (7.27)

The summability condition we require Ci to satisfy is such that the C∗j matrices are ab-

solutely summable. That is,

∑∞
j=0

∣∣∣C∗j
∣∣∣ = ∑∞

j=0
∣∣∣∑∞i=j+1 Ci

∣∣∣
= ∑∞

i=1 i |Ci| <∞.
Hence, the Ci matrices must be 1-summable. For finite order VARmodels, this condition will

always be satisfied since its MA representation has exponentially decreasing (in an absolute

sense) parameters.

6 Notice that in the PIH case, α′⊥β⊥ = 1.

– 29 –



In our VAR(1) model, the C∗j matrices are for all j ≥ 0

C∗j = −∑∞j=i+1α(Ir + β′α)(i−1)β′

= −α
(∑∞

i=j [Ir + β′α]i
)
β′

= −α(Ir + β′α)j
(∑∞

i=0 [Ir + β′α]i
)
β′

= α(Ir + β′α)j(β′α)−1β′.

(7.28)

It is now straightforward to show that these matrices indeed are absolutely summable7 and

thus that the C(z) matrix polynomial can be expressed as

C(z) = C + (1− z)C∗(z). (7.29)

Substituting for C(z) in equation (7.21) we get

xt = xt−1 + Cµ + Cεt +
∑∞
j=0 C∗j (εt−j − εt−j−1)

= x̃0 + Cµt + C
∑t
i=1 εi +

∑∞
j=0 C∗j εt−j .

(7.30)

Again we find that xt includes (i) an I(1) component; (ii) an I(0) component; and (iii) initial

values, denoted by x̃0.

The I(1) component is of particular interest in the so called common trends model; see

King et al. (1991). Specifically, while this component is made up of n linear combinations

of the accumulated Wold innovations, only (n− r) of these combinations are linearly inde-

pendent. In other words, there are fewer trends than variables. From equation (7.30) we

find that

C(µt +
t∑

i=1
εi) = β⊥

(
α′⊥β⊥

)−1

α′⊥µt +

t∑
i=1

α′⊥εi


 . (7.31)

Hence, the reduced form linearly independent (n− r) common trends are given by (α′⊥µt +∑t
i=1α′⊥εi), while the coefficients on these trends are β⊥(α′⊥β⊥)−1.

Structural common trends models were first suggested by Blanchard and Quah (1989),

King et al. (1991), and Shapiro and Watson (1988). The basic idea is to make identifying

assumptions about the long run responses in the endogenous variables with respect to

the structural shocks. The observation that the number of linearly independent common

trends in the reduced form conditional MA representation is smaller than the number of

endogenous variables is a central ingredient. This suggests that structural shocks can be

decomposed into (i) shocks with permanent effects on x (trend shocks); and (ii) shocks

which only have temporary (transitory) effects on x. Moreover, since the I(0) component

and the change in the I(1) component in (7.30) are correlated, the structural trend shocks

7 This follows from the fact that (Ir + β′α) has all eigenvalues inside the unit circle.
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typically lead to cyclical fluctuations around the trends as well changes in the trends. When

xt contains macroeconomic variables, we can think about this as shocks to growth also

having an influence on business cycle fluctuations.

The common trends approach is based on identifying B0 and Ω using more reduced form

parameters than just Σ. In particular, the restrictions implied by cointegration are used for

identification through the matrix C .

Example: Consider again the PIH. To exactly identify the parameters of a structural VAR

model such that it has a common trends interpretation we need to impose 4 identifying

assumptions. By letting Ω be the identity matrix we already have 3 of these restrictions.

The remaining restriction will be imposed on B0 such that only one of the structural shocks

has a long run effect on x.

Collecting the initial values in x̃0 the reduced form common trends representation is

xt = x̃0 + δt + C
t∑

i=1
εi + C∗εt . (7.32)

Again, let ηt = B0εt be the structural shocks, where ηt = [ϕt ψt]′. The innovation ϕt is

a trend shock, while ψt is a transitory shock. The structural form of the common trends

representation is:

xt = x̃0 + δt +A
t∑

i=1
ϕt +Φηt . (7.33)

Here, the 2 × 1 vector A is defined from CB−10 = [A 0], and the 2 × 2 matrix Φ = C∗B−10 .

Since, Ω = I2, the parameters of B0 must also satisfy B−10 (B′0)−1 = Σ.

Question 15: What do our 4 identifying assumptions imply for B0?

In the PIH case we have for xt = [Ct Yt]′ that

CB−10 =



1 0

1 0






β11 β12

β21 β22



−1

=



1 0

1 0






β+11 β+12

β+21 β+22




=



β+11 β+12

β+11 β+12


 .
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For the second column to contain zeros only, the inverse of B0 must have that β+12 = 0.

Since the inverse is lower triangular, it follows that B0 itself must be lower triangular, i.e.

B0 =



β11 0

β21 β22


 .

To uniquely determine the remaining 3 elements of B0 we use the relation Σ = B−10 (B′0)−1.

This given us


σ2
u σ2

u

σ2
u σ2

u + σ2
v


 =




1/β11 0

−β21/(β11β22) 1/β22






1/β11 −β21/(β11β22)
0 1/β22




=




1/β211 −β21/(β211β22)
−β21/(β211β22) 1/β222 + β221/(β

2
11β

2
22)


 .

Solving these 3 equations for βij we obtain:

β11 = 1/σu β21 = −1/σv β22 = 1/σv. (7.34)

These parameters are equivalent to the trend innovation, ϕt , being a permanent income

shock, and the temporary innovation, ψt , being a transitory income shock. This can be

seen from the contemporaneous effects on consumption and income from one standard

deviation shocks being

B−10 =



σu 0

σu σv


 ,

where the first column contains the effects on x from the trend shock and the second column

the effects from the temporary shock. The long run responses are given by

CB−10 =



σu 0

σu 0


 .

The long run is reached after 1 period in this example, and comparing the above results to

those in section 2 we find that they are indeed equivalent.

For the n variable case, imposing the necessary n2 identifying assumptions is somewhat

more involved. First, n(n + 1)/2 restrictions are given by assuming that Ω = In. Second,

(n−r)r restrictions are obtained from CB−10 = [A 0], whereA is an n×(n−r)matrix. These

assumptions imply that the first (n− r) structural shocks have a long run effect on at least

one of the x variables, while the remaining r shocks have only temporary effects on x. To

identify the (n− r) trend shocks (n− r)(n− r − 1)/2 restrictions need to be imposed on A
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(which implies the same number of restrictions on B0), while the r transitory shocks can be

identified from, e.g., restricting r(r − 1)/2 elements of the final r columns of Φ0 = C∗0 B
−1
0 .

How to achieve this is discussed in some detail by King et al. (1991), Mellander et al. (1992),

and Englund et al. (1994). In addition, the paper by Jacobson et al. (1996) discusses how

to relate the structural common trends coefficients of the matrix A to familiar economic

theory parameters.
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