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Abstract: This note discusses how to compute generalized impulse responses and their asymp-
totic distribution. The results I present are essentially vector versions of what has already been
shown by, e.g., Pesaran and Shin (1998). The value added is therefore measurable in terms of
providing simpler algorithms for writing the computer code needed to make use of generalized
impulse responses in practise.
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1. Setup

In contrast with impulse response functions for structural models, generalized impulse re-
sponses do not require that we identify any structural shocks. Accordingly, generalized impulse
responses cannot explain how, say, inflation reacts to a monetary policy shock. Instead, gener-
alized impulse responses provides a tool for describing the dynamics in a time series model by
mapping out the reaction in, say, inflation to a one standard deviation shock to the residual in
the interest rate equation.

The general setup we shall consider is a VAR process for some p dimensional time series xt
given by

xt = ΦDt +
k∑
i=1

Πixt−i + εt, t = 1, . . . , T, (1)

where Dt is a vector with deterministic variables. The process xt may be covariance stationary,
integrated of order d (and possibly cointegrated), while εt is p dimensional and assumed to be
i.i.d. with zero mean and positive definite covariance matrix Ω.

The h-steps ahead forecast error for xt is given by:

xt+h − E
[
xt+h|It

]
=

h−1∑
j=0

Cjεt+h−j , (2)

where It is an information set which includes the history of xs up to and including period t as
well as the entire time path for Dt. The p × p matrices Cj are given by C0 = Ip and

Cj =
mink,j∑
i=1

ΠiCj−i, j ≥ 1,

so that all Cj matrices can be determined recursively from the Πi matrices.
Koop, Pesaran and Potter (1996) defined the generalized impulse response function by:

GIx(h, δ, It−1) = E
[
xt+h|εt = δ, It−1

]− E
[
xt+h|It−1

]
, (3)

where δ is some known vector. For the VAR process this means that:

GIx(h, δ, It−1) = Chδ.

The choice of δ is therefore central to determining the time profile for any generalized im-
pulse response function. As an alternative to shocking all elements of εt one may consider just
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shocking one element such that εjt = δj . We may now define the generalized impulse responses
as:

GIx(h, δj , It−1) = E
[
xt+h|εjt = δj, It−1

]− E
[
xt+h|It−1

]
. (4)

Letting δj =
√
ωjj, the standard deviation of εjt, and assuming that εt is Gaussian, it follows

that:
E
[
εt|εjt =

√
ωjj

]
= Ωejω

−1/2
jj , (5)

where ej is the j:th column of Ip. For the VAR model we then find that

GIx(h,
√
ωjj, It−1) = ChΩejω

−1/2
jj .

This measures the response in xt+h from a one standard deviation shock to εjt, where the
correlation between εjt and εit is taken into account. Defining the diagonal p × p matrix Σ as:

Σ = diag




(
e′1Ωe1

)−1/2

(
e′2Ωe2

)−1/2

...(
e′pΩep

)−1/2



, (6)

we may express the generalized impulse responses in matrix form as:

GIx(h,
√
ω11, . . . ,

√
ωpp, It−1) = ChΩΣ = ChB = Ah, (7)

where column j is given by GIx(h,
√
ωjj, It−1). When Ω is diagonal, then B = Ω1/2 = Σ−1, a

diagonal matrix with standard deviations along the diagonal.

2. Asymptotics

In order to determine to asymptotic covariance matrix for an estimate of ChB we need to make
a few assumptions. Suppose that Ch depends on a K dimensional vector θ ∈ R

K and that Ch
is differentiable with respect to θ. Relative to the VAR model, θ includes the elements of Πi or
some transformations thereof, but they do not include any element from Φ or Ω. In case the
VAR model includes cointegration rank restrictions, then θ does not include the cointegration
vectors but only the parameters on stationary transformations of x. For the VAR model where
xt is cointegrated of order (1,1), this means that θ only includes parameters on lagged first
difference of xt and on the 0 < r < p cointegration relations β′xt−1.

Furthermore, assume that we have an estimator of θ, denoted by θ̂, based on a sample of T
observations, which satisfies: √

T
(
θ̂ − θ

) d→ NK

(
0,Σθ

)
, (8)

with NK being a K-dimensional Gaussian distribution,
d→ denoting convergence in distribution,

and Σθ being positive semidefinite. Furthermore, let ω = vech(Ω), with vech being the column
stacking operator which only takes the elements on and below the diagonal. The estimator of
ω, denoted by ω̂, is assumed to satisfy:

√
T
(
ω̂ − ω

) d→ Np(p+1)/2
(
0,Σω

)
, (9)

while θ̂ and ω̂ are asymptotically independent. In case εt is Gaussian and, e.g., xt is cointegrated
of order (1,1) these assumptions are all satisfied as long as there are no restrictions which
involve both θ and ω. Furthermore, for such a model

Σω = 2D+
p

(
Ω ⊗ Ω

)
D+′
p ,

where ⊗ is the Kronecker product, Dp is the duplication matrix (cf. Magnus and Neudecker,
1988), and D+

p = (D′
pDp)−1D′

p is the Moore-Penrose inverse of Dp.
Given our assumptions it follows that the asymptotic distribution of the matrix form of the

generalized impulse responses in equation (7) can be expressed as:
√
T
(

vec
(
Âh

)− vec
(
Ah

)) d→ Np2(0,ΣAh), (10)
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where

ΣAh =
[
B′ ⊗ Ip

]∂vec(Ch)
∂θ′

Σθ

([
B′ ⊗ Ip

]∂vec(Ch)
∂θ′

)′
+
[
Ip⊗Ch

]∂vec(B)
∂ω′ Σω

([
Ip⊗Ch

]∂vec(B)
∂ω′

)′
.

The partial derivatives ∂vec(Ch)/∂θ′ are readily available from several sources (see, e.g., Warne,
1993, or Vlaar, 2004). Hence, what remains to be shown is what the matrix with partial deriva-
tives ∂vec(B)/∂ω′ looks like.

It can be shown that:
∂vec(Σ)
∂vec(Ω)′

= −1
2
LpΣ3L′p,

where Lp is a p2 × p 0-1 matrix defined by

Lp =




e1e
′
1

e2e
′
2

...

epe
′
p



.

It then follows that the differential of vec(B) satisfies:

dvec(B) =
[
Σ ⊗ Ip

]
dvec(Ω) − 1

2

[
Ip ⊗ Ω

]
LpΣ3L′pdvec(Ω).

Since dvec(Ω) = Dpdω we have that:

∂vec(B)
∂ω′ =

([
Σ ⊗ Ip

] − 1
2

[
Ip ⊗ Ω

]
LpΣ3L′p

)
Dp. (11)

If xt is cointegrated of order (1,1) with r cointegration vectors, denoted by the full rank p× r
matrix β, we may also define generalized impulse responses for the cointegration relations.
Suppose that we have an estimator of β, denoted by β̂, such that

√
T
(
β̂ − β

) p→ 0,

where
p→ denotes convergence in probability. Estimators of β, such as the ML estimator sug-

gested by Johansen (1996), typically satisfy this assumption. Let the cointegrating relations be
defined by zt = β′xt. The generalized impulse response function for zt+h from one standard
deviation shocks to εt is then given by

GIz(h,
√
ω11, . . . ,

√
ωpp, It−1) = β′Ah,

It can now be established that an estimator of β′Ah satisfies:
√
T
(

vec
(
β̂′Âh

) − vec
(
β′Ah

)) d→ Np2(0, [Ip ⊗ β′]ΣAh[Ip ⊗ β]). (12)

The reason for this result is, of course, that β̂ is
√
T -consistent whereas Âh is consistent.

3. Remarks

If xt is cointegrated of order (1,1), we may rewrite the VAR in VEC form such that

∆xt = ΦDt +
k−1∑
i=1

Γi∆xt−i + αβ′xt−1 + εt,

where α and β are full rank p × r matrices (0 < r < p); see, e.g., Johansen (1996) for details.
In this case we may define θ = vec([Γ1 · · · Γk−1 α]) and the p × p matrix:

C = β⊥
(
α′
⊥Γβ⊥

)−1
α′
⊥,

with Γ = Ip −
∑k−1

i=1 Γi. We now find that

lim
h→∞

Ah = CB,
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while
lim
h→∞

β′Ah = 0.

Hence, the long-run generalized impulse responses in levels depend on the long-run impact
matrix C and converge to finite matrix, while the long-run generalized responses for the coin-
tegration relations converge to zero. The asymptotic distribution of CB is readily determined
from the above results and those in, e.g., Paruolo (1997) regarding the asymptotic distribution
for the ML estimator of C; see also Johansen (1996).

Specifically, letting A = CB then
√
T
(

vec
(
Â
) − vec

(
A
)) d→ Np2(0,ΣA),

where

ΣA =
[
B′ ⊗ Ip

]∂vec(C)
∂θ′

Σθ

([
B′ ⊗ Ip

]∂vec(C)
∂θ′

)′
+
[
Ip ⊗ C

]∂vec(B)
∂ω′ Σω

([
Ip ⊗ C

]∂vec(B)
∂ω′

)′
.

The matrix with partial derivatives ∂vec(B)/∂ω′ is given in equation (11). Furthermore, it is
readily shown that

∂vec(C)
∂θ′

=
[
ξ′ ⊗ C

]
, (13)

where ξ is an p(k − 1) × p matrix given by

ξ =




C
...

C(
α′α

)−1
α′(ΓC − Ip

)



.

The generalized impulse responses for z provides us with a tool to measure how quickly
the long-run relations converge to their steady state values. Since the p shocks may result in
β′Ahej ≈ 0 for different h, we may, for example, choose a convergence horizon h∗ based on the
slowest response.

The generalized impulse responses are equal to impulse responses from a structural VAR
when the structural shocks are identified from a recursive structure and Ω is diagonal. In all
other circumstances will the generalized impulse responses differ from the impulse responses of
a structural VAR.
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